

The EVLA Correlator P. Dewdney

Herzberg Institute of Astrophysics National Research Council Canada

Corrélateur VIDAR Correlator

Outline

- 1. Correlator Performance Goals
- 2. Hardware Progress
- 3. Software Progress
- 4. System Progress
- 5. Prototype Testing
- 6. Funding, Budget & Schedule
- 7. Risk Issues

Key EVLA Processing Capabilities

National Research CouncilConseil national de recherchesCanadaCanada

RC-CRC EVLA Correlator System Diagram

Significant Events Since May, 2006

All 1st prototype circuit boards have been extensively tested and small revisions implemented.

- Second prototypes will be ordered mid-Sept.
- Correlator Chip Production CDR May/07
 - Production quantity now on order (\$U\$2.3M).
- Correlator power system is installed (\$US270k)
- \$2.8M worth of production parts on order.
 - FPGA's, COTS & other chips, cables, racks, subracks.
- Total production stage expenditures: \$US7.2M
 - Software development paralleling H/W.
 - Software already in use for H/W and will be used for OTS.
- Assembly of racks to begin in autumn.
- Connectivity Design Review Jul/07.
 - Simplified architecture.

New Connectivity Scheme

- Efficient use of hardware, especially correlator boards.
- Simultaneous VLBI, New Mexico Array no longer needed.
- Improvements in numbers of channels, especially more flexible use of recirculation.
- Simplified structure easier to allocate resources.
- Somewhat more reliable
 - Fewer connections.
- Small changes to baseline board needed, now done.
 - Xbar switch to provide flexibility of sub-array allocation.
 - Phased sum possible with full 8 GHz (2 pol) bandwidth.
- Somewhat less expensive system.
- Expansion remains possible, but more restrictive.
- Reversible if required, although parts count would increase.
- Recently reviewed.

Hardware Progress Summary

- FPGA's
 - Almost all FPGA's are designed and tested thoroughly, including the Filter Chip.
 - Remaining FPGA's are RXP (retiming & phasing) and the X-bar.
 - Any remaining bugs in FPGA's can be fixed in-system.
- Station board
 - Data paths have been validated.
 - Requires some "bug fixes" and a re-spin.
 - Functional testing, including integration with Baseline Board is almost complete.
 - Second prototype to be sent for manufacture mid-Oct.
- Baseline Board
 - Baseline Board requires a revisions to accommodate a cross-bar switch.
 - Functional testing with a sub-set of correlator chips is complete.
 - Phasing board no longer needed phased array now incorporated into Baseline Board.
 - Second prototype to be sent for manufacture end of Sept.
- Other boards
 - Fan-out board replaced by X-bar board in Station subsystem.
 - Daughter boards exist and have been tested.
 - A few simple boards remain to be done.
- System (see subsequent slide)

NRC · CNRC

Hardware Prototype/Production Stages

- Stage 1: 1st prototypes these are in hand now and being tested.
- Stage 2: 2nd prototypes two of each board (Station and Baseline) will be built, along with 14 bare boards. We will take a chance on the manufacture of bare boards, but not on the value of the parts. Assembly will be held off until Stage 3.
- Stage 3: 3rd prototypes assembly of remaining boards from Stage 2 (or re-spin boards, if necessary). Use for On-the-Sky tests.
- Stage 4: Full production and production testing of boards.

EVLA Correlator Tests – Lab Scenes

EVLA Correlator Tests – Baseline Board

Connector carrying 32 x 4 = 128 Gbits/s.

EVLA Prototype Station Board

Fiber Optic Receiver Module

Filter FPGA Chips

Delay Boards

EVLA Prototype Baseline Board

First "H/W Fringes" on EVLA Correlator

- 128 MHz BW, 4-bit samples, 128 complex lags
- Utilizes 1/16th capacity of one of the 64 chips on the Baseline Board.

- Almost an end-to-end test (data from test generator board).
- Each correlator chip is capable of ~1 GHz bandwidth (4 x 2 pol x 128 MHz).
- Output data rate throttled to ~260 frames/sec for this test.
- Link capable of 110k frames/sec.

Correlator Software System Context

Log Server

Software Progress

- CMIB & GUI's
 - GUI's provide "engineer's view" of correlator system.
 - Permanent maintenance value.
 - S/W team continues support of prototype board testing.
 - All FPGA's are supported now with Module Access Handlers, GUI's, etc.
- Real-Time Data Display (RTDD)
 - Graphical representation of Station Board output.
 - First release is available, and is being used in the lab.
 - Able to display Station Board output data in real time and to analyze previously stored data.
 - Will likely be used for initial inspection of baseline board data.
- Correlator Back End Software
 - Current state of development sufficient to support on-the-sky testing.
 - Binary Data Format definition and design is near complete.

Software Progress (cont'd)

- Virtual Correlator Interface (VCI) & MCCC software
 - Being updated to handle new connectivity scheme (simpler).
 - Beginning work on implementation.
- Throughput
 - Analysis of throughput done by Sonja Vrcic (Memo 27).
 - Martin Pokorny is working on a second throughput analysis.
- Bottom Line
 - Sufficient software to fully test hardware hardware is not "just sitting there".
 - If necessary could even collect EVLA data with the addition of delay-model and antenna pointing support.

Correlator Software Team

- Substantial (and growing team), commensurate with growing importance of S/W.
- Sonja Vrcic (Penticton)
 - Coordinates overall design and specification.
 - Virtual Correlator Interface (VCI) definition.
 - Master Correlator Control Computer (MCCC) S/W.
- Bruce Rowen & Pete Whiteis (Socorro)
 - Correlator hardware control S/W (CMIB).
- Kevin Ryan (Socorro)
 - GUI development and hardware control S/W.
- Martin Pokorny (Socorro)
 - Correlator Backend software.
- Michael Rupen, Jon Romney, Bryan Butler, Ken Sowinski, Barry Clark, Bill Sahr, Rick Perley, Dave Harland (Socorro).
 - Advisory capacity.

- Racks are being ordered in lots of eight.
- Sub-racks and all other mechanical parts are on order.
- Rack Assembly to begin in fall.
 - Contract hire to help with this task.
- Racks to be assembled and tested in lots of eight.
 - Testing will require fully loaded rack for first one.
- Correlator room is complete
 - DC power plant is installed.

Correlator Rack Layout

NRC · **CNRC** Correlator Room Layout

NRC · CNRC

Correlator Testing

- Stage 1/2: Prototyping and testing.
- Stage 3 Prototype testing
 - 16SB/16BB in racks will form "testable unit sub-systems", loaded in a way that is very similar to final rack configuration.
 - Subjected to as many tests as possible in lab environment.
 - When complete, the OTS system will be shipped to Socorro.
- On-the-Sky (OTS) 10-antenna.
 - Principal DRAO purpose is to verify hardware in-system.
 - Long integration times available.
 - Check for HST-style bloopers.
 - See Mark McKinnon & Michael Rupen talks for more info.
- Production Testing
 - Both correlator chips and finished circuit boards will be subjected to temperature cycling and subsequent testing/burn-in before leaving DRAO.
 - Methodology is worked out, but precise details are not.
 - Testing hardware and equipment has been purchased or developed.

EVLA Correlator Chip Function Test Board

- Large Battery of Tests
- Tests done at full clock speed (or slightly higher)
- One chip running successfully for days.

NRC · CNRC

On-the-Sky Testing

- Primary purpose DRAO led (Critical OTS Tests).
 - Verify Hardware so that production phase can proceed.
 - Long integration times available.
 - Check for HST-style bloopers.
- Secondary Purpose NRAO led.
 - Integration of a "small" system with EVLA software.
 - Testing of such, and further checks of software through-put.
- Tertiary Purpose NRAO led.
 - Test wide-band observing.
 - Develop wide-band calibration techniques.
- Quaternary Purpose NRAO led.
 - Look at wide-band RFI environment.
 - Develop evasion/expurgation measures.
- Quinary Purpose NRAO led.
 - Carry out early observations where possible.

NRC · **CNRC** Correlator Summary Schedule

Optimal Schedule																				
	-		2007				2008					2009				2010				2011
10	Task Name Stage 1 Prototype Hardware in Penticton	Start 04/10/2005	Q1 107	Q2 '07	Q3 107	Q4107	Q1 '8	8 02.06	Q310	16 Q.	4 108	Q1 '09	Q2 '09	Q3 '09	Q4 '09	Q1 10	Q2*10	Q3 10	Q4'10	Q1 '11
2				46.0			_													
*	Stage 1 Prototype PCB Acceptance Testing	23/10/2006		258	10		12040													
3	Stage 2 Prototype Redesign, Fabrication (10 PCB), & Assembly (2 PCB)	28/05/2007					11/12													
4	Power Plant Delivered to VLA Site	12/03/2007	•	12/03												_				
5	New Connectivity Scheme Sign-Off	31/07/2007			+ *	107														
6	Stage 2 Prototype Fabrication Acceptance Testing (2 Assembled PCB)	05/12/2007				- L	05													
7	Stage 2 Accepted; Go-ahead Stage 3 (Assemble 8 PCB)	30/01/2008				L		21/02												
8	Hardware/Software Integration Testing	22/02/2008							19/06											
9	Critical Design Review	19/06/2008					T		19/06											
10	Hardware for OTS Testing Sent to VLA	20/06/2008							17/0	17										
- 11	On-The-Sky Testing	18/07/2008									30/10									
12	High-Speed Inter-Rack Cables Delivered to and Installed at VLA Site	18/12/2007						17/03												
13	Racks Delivered to and Installed at VLA Site	18/03/2008								01/09										
14	Limited Production Hardware Could Be Sent to VLA	20/06/2008							47/0	ą.	_									
15	Limited (10-Anterna) Observing	01/01/2009										01/01								
16	Stage 4 Production Hardware	31/10/2008										12/0	2							
17	Final Full Production Test & Burn-in in Penticton	13/02/2009											148	6						
18	Full Board Installation & Testing @ VLA	15/05/2009															15/04			
19	Commissioning - Turn off old correlator	16/04/2010																	25	/11
20	Prototype Software	22/12/2005		1810	<u> </u>															
21	MCCC Software	03/07/2006								1	8/10		_							
22	CPCC Software	10/07/2007						2502					_							
23	Correlator Backend Software (V1.0 Test, V2.0)	30/11/2006										21/01								
24	CMIB Production Software	21/05/2007									ŧ	343								

Note on CDR Timing

- Current plan is to hold CDR
 - Before the OTS tests,
 - After the DRAO "hardware/software integration" tests.
- This provides the CDR committee with the opportunity
 - to review lab performance in its entirety and possibly suggest extensions.
 - to review suggested "critical OTS" tests and suggest alternatives or additional tests.
- CDR committee will be informed of OTS results by email and asked for a quick ratification.
- CDR committee makes recommendations, not final decisions.

"Compressed" Schedule (Best Case)

"Expanded" Schedule

Funding in Canada

- Aug/03 Canadian Treasury Board approval of submitted budget (\$C 20M over 5 years).
 - Five-year period is up in Mar 31, 2008.
 - Time extension required
 - Not guaranteed documentation submitted.
- Documentation has been submitted.
- Actual budget is healthy but not flush.
 - Contingency diminishing.
 - Risks are also diminishing.

Correlator Projected Spending Profile

Non-Technical Program Risks

- Funding
 - Time extension is required as already noted.
 - Small risk, but could lead to delays, questions, etc.
- Schedule slippage?
 - Technical progress slower than the deliberately aggressive initial schedule.
 - Unexpected "Re-spins" will present additional schedule risk.
 - Concerns over procurement processes.
 - This risk is retired.
- Inadequate contingency?
 - Contingency now small.
 - Cost risk greatly reduced now that prototypes are tested and parts prices most fixed.
 - Manufacturing cost remains a risk.
 - Exchange-rate changes have been favourable to date.
 - Labour costs continue.
 - New connectivity scheme has brought back small contingency.

Technical Program Risks

- Technical risk is greatly reduced since May 2006.
 - Prototype hardware has been thoroughly tested in the lab, although this is not quite over.
- Manufacturing should be fairly risk-free, but
- Assembly into a final system could present risk.
- Software completion could present a schedule risk.

Descoping

- Unlikely to be required.
- Difficult to see what can be descoped at this stage.
 - Would need to be presented with a problem before spending time thinking about this.

NRC · CNRC

Project Summary

- Are we meeting the required schedule?
 - We may be about a year later than original delivery date.
- Are we over budget at this stage?
 - Budget is slimly allocated, but we are not over budget.
- Are we planning to deliver on what we said we would do?
 - Yes, with minor improvements.
- What are the major risks at this stage?
 - Hypothetical funding difficulty after Mar 31 2008.

EVLA Correlator Group

DRAO-based.

NRAO-based.

End