

EVLA Computing

Schedule, Staffing, Testing, Tracking

Contents

- Software requirements & timescales
- Milestones
- Tracking and testing
- Staffing requirements
- Available staff
- Risks

Scientific Support Systems requirements

- Scientific requirements for SSS subsystems refined in 2005
 - Each requirement is assigned priority (1, 2, 3). Priorities:
 - 1. Essential
 - Must be present
 - Must work with high efficiency
 - 2. Important
 - Should be present
 - There may have to sacrifices in performance
 - 3. Desirable, but not critical
 - Considered for upgrades or further development
 - ... and timescale (A E)

Illustration of Priorities: Scheduling

Priority 1

- Integrated with other tools; common look-and-feel
- Supports Dynamic Scheduling, based on scientific priority and current conditions

Priority 2

- Upon request, tool observes provided list of calibrators, then chooses the best using pipeline results (based on heuristics)
- Source-calibrator cycle time based on current conditions
- Keep PI informed: e-mail; up-to-date project web page
- Dynamic Scheduling priorities modified by u-v coverage, program completion pressure, and other influences

• Priority 3

 Dynamic scheduling priorities modified by observations of targets themselves, or by contribution to "scientific value" of Scheduling Block

Time Scale and Major Milestones (1)

2006	2007 J	2008 I	2009	2010 I	201 1	2012 I	
		Ť		↑		1	
Re	eleases:	Α	B C	D		E	

Release	Date	Event	Details
А	Q3, 2007	Arrival Prototype Correlator	4 SBs, 1 BB, some EVLA antennas
В	Q2, 2008	Arrival Production Correlator	16 SBs, 16 BBs
С	Q1, 2009	Science Commissioning/testing	Experiments of increased complexity
D	Q2, 2010	Shared Risk Observing	All station/baseline boards installed
Е	Q2, 2012	Full Science operations	End of EVLA Project

Time Scale and Major Milestones (2)

Release	Date	Event	Main Users
А	Q3, 2007	Arrival Prototype Correlator	Engineers, expert local scientists
В	Q2, 2008	Arrival Production Correlator	Engineers, expert local scientists
С	Q1, 2009	Science Commissioning/testing	Expert observers
D	Q2, 2010	Shared Risk Observing	Intermediate observers
Е	Q2, 2012	Full Science operations	All users, including novices

Milestones and SSS Subsystems (1)

• Release A (Q3, 2007)

- Archive: basic storage functions for monitor data and raw visibilities, simple data retrieval
- Release B (Q2, 2008)
 - Scheduling: basic scheduling; support scheduling block concept
 - Archive: add control scripts, program/scheduling blocks, some environmental data
- Release C (Q1, 2009)
 - Proposal: basic proposal preparation functionality
 - OPT: scheduling/program block generation; expert H/W setup
 - Archive: more environmental/project data; improved search/retrieve; support proprietary/public data

Milestones and SSS Subsystems (2)

• <u>Release D (Q2, 2010)</u>

- Proposal: functionality of current GBT/VLA tool; sensitivity calculator
- OPT: GUI, improved source list/calibrator selection for novice users
- Scheduling: simple criteria to evaluate priority of scheduling block, simple feedback to observers
- Archive: all project data stored, Web-based GUIs, improved search

• <u>Release E (Q2, 2012)</u>

- Proposal: Wizard mode capable of creating Scheduling Blocks from simple observing modes
- OPT: Wizards for selecting standard observing setups
- Scheduling: Full dynamic scheduling + heuristics. Full feedback to observers
- Archive: Full support for VO and pipeline

High-level Milestones for 2006-2007

<u>Milestone A – support prototype WIDAR testing Q3, 2007</u>

- TelCal, delivery of delay models, embryonic CBE
- Basic control of prototype WIDAR
- Simple visibility archive in place by Q3, 2007
- CASA filler, data path into AIPS, calibration/data examination tests
- Replace Modcomp computers Q4 2006/Q2 2007
- Early development of subsystems needed at a later date
- Conduct design reviews with participation outside NRAO
 - SSS PDR early fall 2006
 - M&C CDR late fall 2006
- Build experience with existing EVLA prototypes
 - Proposal tool for VLA/GBT
 - Dynamic Scheduling for VLA
- Support EVLA specific CASA tests

Tracking and Meeting Milestones

- <u>Tracking milestones</u>
 - Monitor & Control: at general weekly coordination meeting
 - Scientific Support Systems: at weekly SSS meeting
 - Post-processing: tracked separately by SSG
 - Major milestones: at weekly management meeting
 - Division Head, Deputy Division Head, Systems Engineer for Software, Project Scientist for Software, Project Manager
- Meeting milestones
 - Facilitated by involving scientists in the software development cycle, as they test and interact with the developers and managers

Testing – Role of Scientific Staff

- Ensure scientific requirements are met
- Check progress on long-term goals
- Advise in revising priorities & deliverables
- Sign off on finished products
- Provide transparency produce public reports

Subsystem Scientists

- Provide scientific guidance for individual subsystems
- Serve as day-to-day contact for programmers
- Interpret scientific requirements for programmers
- Recruit testers
- Oversee testing
- Take active part in testing
- Produce user documentation
- Consult with other scientific staff
- Emphasis varies with subsystem status

Subsystem Scientists

- <u>Current subsystem scientists</u>:
 - Proposal Submission: Wrobel
 - Observation Preparation: Chandler
 - WIDAR correlator: Rupen/Romney
 - Post-processing: Rupen/Owen
 - TBD: Scheduler, Observation Monitoring, Archive

Other Scientific Involvement

- Less formal, more direct contacts
 - Executor functionality development driven by input from staff scientists (reference pointing)
 - AIPS plotting programs developed based on input from scientific commissioning testing
- <u>Scientists involved in testing</u>
 - Initial tests: small in-house group, fast turnaround, one or more cycles
 - Pre-release tests: larger group of staff across sites and projects
 - External tests: staff + outside users

Scientific Support Systems: Prop. Submission Tool

- Feb 10: post-mortem based on user feed-back on recent release
 - set timetable and requirements for next release
- Mar 1: internal test-I (van Moorsel, Butler, Rupen)
 - overall functionality and ease-of-use
- Mar 20: internal test-II (+Frail)
 - "delta" test: bug fixes and "easy" new requirements
- Apr 18: NRAO-wide test (14, incl. CV/GB)
 - suitability for general release
- May 3: internal test-III
 - sessions; documentation
- May 10: public release
- late May: test post-submission handling
- Early June: gather user comments, set next goals and schedule

SSS priority 1 staffing requirements

- Staffing estimates based on SSS requirements were made
 - For Priority 1 and 2 requirements
 - Assuming borrowing from ALMA where expedient
 - Will be refined when subsystem designs available
- Combined with SSS milestones into software development plan
 - Priority 1 requirements have to be delivered by their due date according to time scales A E
 - May be scheduled to be worked on ahead of time, to make efficient use of staff or when non-project considerations require an earlier release
- Shows how much effort needed in each subsystem for each year
- Does not include staff scientist involvement

Required SSS staffing (for priority 1 requirements)

Computing Related Staffing (1)

- EVLA computing division (ECD)
 - Head Gustaaf van Moorsel (0.9 EVLA)
 - Monitor & Control (M&C) : 9 staff members
 - 8.0 FTEs on EVLA (4.3 EVLA, 3.7 Contributed Effort)
 - 1.0 FTE on VLA/VLBA operations
 - In original EVLA budget
 - Scientific Support Systems (SSS) : 5 staff members
 - 3.3 FTEs on EVLA (2.2 EVLA funded, 1.1 Contributed Effort)
 - 1.7 VLA/VLBA operations (Web, NRAO User Database, VLA/VLBA archive, etc)
 - Effort funded out of EVLA contingency, concerns about staffing level

Computing related staffing (2)

- <u>Systems Engineer for Software</u>
 - Butler, 0.5 FTE
 - Reports to EVLA project manager
- Project Scientist for Software
 - Rupen, 0.5 FTE
 - Reports to EVLA project scientist
- <u>Science Software Group</u>
 - Headed by McMullin
 - Responsible for post-processing (CASA, AIPS)
 - Used to be jointly managed by EVLA and ALMA through Interferometry Software Division (ISD), now under E2E operations division
 - 8 FTEs, 2.65 FTEs EVLA

Staffing Profile

Staffing Profile

Distribution Between Budgets

Required vs. available staffing - SSS priority 1

- Budgeted staffing: 12.7 FTE-years (EVLA) + 4.9 FTEyears (contributed effort) = 17.6 FTE-years
- Required staffing: 25.8 FTE-years
- Shortfall 8.2 FTE-years, or ~2 FTEs through 2010
 - Assumes contributed effort funding continues at current level
- These two required positions will now be provided through the NRAO E2E Operations Division, allowing us to deliver a system which:
 - Lowers barriers to non-radio astronomers/novice users
 - Provides easier access to an archive with a wider selection of products
- Again, this will deliver priority 1 items only!

Risks

Relative Risk = Severity x Probability x (Scaled) First Time of Problem's Impact

Description	Severity	Prob.	First Impact	Rel. Risk	Mitigation Strategies, e.g.	E2E Ops support
Insufficient communications bandwidth within M&C System	80%	20%	С	10%	Purchase more hardware	Х
Insufficient throughput of data from correlator	100%	50%	С	24%	Purchase more hardware	Х
Unavailability of fully automated user-friendly systems for novice users	60%	100%	E	12%	Offer easy <i>or</i> automated, defer	Later
Scientific and technical opportunities missed due to late participation in VO	50%	70%	С	21%	Accelerate effort via other channels	Now
Modern hardware unable to support project requirements (Moore's law breaks down)	100%	60%	D	24%	Pursue parallel processing	Х
CASA not accepted by users due to lack of functionality (for easier problems)	30%	50%	А	15%	Use other systems	Now
CASA not accepted by users due to lack of functionality (for more difficult problems)	100%	40%	С	24%	Provide data analyst support	Now
CASA not accepted by users due to difficulties with user interface/usability	80%	60%	D	19%	Provide data analyst support	Now