





# Budget, Schedule, Contingency

#### Mark McKinnon Project Manager

Mark McKinnon NSF Mid-Project Review May 11-12, 2006 1



#### Outline



- Schedule
- Milestones
- Budget
- Contingency
- Project Risks
- Risk Analysis
- Descope Options



Completion Status of Budget and Schedule - 1



- Definitions of terms used in plots and tables
  - Percent Spent: comparison between the money actually spent on a task and the value assigned to it in the original project plan
  - Percent Complete: comparison between the value of the work completed on a task to its total value in the original project plan



## Completion Status of Budget and Schedule - 2





Mark McKinnon



## Milestone Completion



**EVLA PROJECT MILESTONE SUMMARY** 



Mark McKinnon



## WBS Level 2 Completion Status - 1



- Project Management: 52.1% spent, 45.8% complete
- Systems Integration: 76.1% spent, 70.1% complete
  - Overspent in parts for bins and modules
- Civil Construction: 87.8% spent, 80.5% complete
  - Advance purchase of materials
- Antennas: 69.1% spent, 59.2% complete
  - Advance purchase of materials
- Front End Systems: 55.1% spent, 43.4% complete
  - Delay in receiver production



## WBS Level 2 Completion Status - 2



- LO Systems: 75.5% spent, 75.1% complete
- Fiber Optics Systems: 64.4% spent, 58.8% complete
- IF Systems: 61.5% spent, 52.7% complete
- M&C System: 57.6% spent, 51.1% complete
  - Contingency applied to address overrun in contributed effort
- Data Management & Computing: 51.2% spent, 40.0% complete
  - Contingency applied to address overrun in contributed effort and to provide additional e2e staff
  - Staff needed to make progress



# **Completed Milestones**



| Date    |
|---------|
| Q2 2003 |
| Q2 2004 |
| Q2 2004 |
| Q3 2004 |
| Q4 2004 |
| Q1 2005 |
| Q3 2005 |
| Q3 2005 |
| Q4 2005 |
| Q4 2005 |
|         |



# **Remaining Milestones**



| • Examples:                                                      | Date    |
|------------------------------------------------------------------|---------|
| <ul> <li>DCAF software ready for testing</li> </ul>              | Q2 2006 |
| <ul> <li>Test prototype of S-band feed horn</li> </ul>           | Q3 2006 |
| <ul> <li>Deliver 7 antennas to operations</li> </ul>             | Q4 2006 |
| <ul> <li>Complete installation of shielded room</li> </ul>       | Q4 2006 |
| <ul> <li>Start production of L-band receiver</li> </ul>          | Q4 2006 |
| <ul> <li>Complete delivery of UX converters (T303)</li> </ul>    | Q4 2006 |
| <ul> <li>Start production of 3-bit, 4Gsps digitizer</li> </ul>   | Q2 2007 |
| <ul> <li>Test prototype correlator on 4 EVLA antennas</li> </ul> | Q3 2007 |
| <ul> <li>Complete round trip phase module (L352)</li> </ul>      | Q4 2007 |
| <ul> <li>M&amp;C system ready for archive</li> </ul>             | Q2 2009 |



#### Critical Path Tasks



| • | Examples:                                                            | Date    |
|---|----------------------------------------------------------------------|---------|
|   | <ul> <li>TelCal software ready for testing</li> </ul>                | Q2 2006 |
|   | <ul> <li>Complete prototype of L-band receiver</li> </ul>            | Q3 2006 |
|   | <ul> <li>Conduct critical design review of M&amp;C system</li> </ul> | Q4 2006 |



## Maintaining Schedule -1



- To maintain project schedule, we need to accelerate retrofits from the planned rate of 5 antennas per year to 5.5
- Can we accelerate the antenna retrofit rate?
  - Retrofits are becoming an assembly line
    - Major components stockpiled (e.g. cryo compressors, HVAC units, L-band feed horns, antenna platforms)
    - Most electronics designs are mature
  - Staff continues to become more efficient in antenna retrofits
  - VLA antennas have been adequately maintained. Their reliability is excellent.



## Antenna Retrofit Sequence: Current



Up until now, we have been pursuing the mechanical and electrical outfitting of EVLA antennas serially, with testing proceeding in parallel.

| Mechanical, | Electrical, | Mechanical,    | Electrical, | Mechanical,        | Electrical, | Mechanical,    | Electrical, |
|-------------|-------------|----------------|-------------|--------------------|-------------|----------------|-------------|
| antenna 1   | antenna 1   | antenna 2      | antenna 2   | antenna 3          | antenna 3   | antenna 4      | antenna 4   |
|             |             | Testing, anter | nna 1       | Testing, antenna 2 |             | Testing, anter | nna 3       |



#### Antenna Retrofit Sequence: Future



In full production, mechanical outfitting of antennas can proceed in parallel with both electrical outfitting and testing.

| Mechanical,  | Mecha       | anical,   |
|--------------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
| antenna 1    | anter       | 1na 2     | anter       | 1na 3     | anter       | 1na 4     | anter       | 1na 5     | anter       | 1na 6     |
| Project Plan | Electrical, | Testing,  |
|              | antenna 1   | antenna 1 | antenna 2   | antenna 2 | antenna 3   | antenna 3 | antenna 4   | antenna 4 | antenna 5   | antenna 5 |



#### **Retrofit Duration**



**Duration of Antenna Retrofit** 



McKinnon



## Maintaining Schedule-2



- Antenna rate of up to 6 per year is possible if :
  - Duration of mechanical overhaul is 2 months.
  - Duration of parallel activities for electrical outfitting and testing is 1 month each.
- ... but need to monitor impact on reliability of VLA antennas. Possible issue for VLA users.
- Expect progress in software areas of the project because of additional e2 staffing resources and finalization of M&C design.
- Shift front end production emphasis to Ka-band while solving design issues with wideband OMT.



Budget



- Funding = \$93.8M (FY06)
  - NSF project funds \$58.7M
  - NRAO contributed effort \$16.3M
  - Canadian partner \$17.0M (C\$20M)
  - Mexican partner \$1.8M



Contingency



Detailed calculation of percent contingency depends upon whether or not project contingency is used to cover the cost to complete the correlator (corr.).

|                  | Corr. Exclusive | Corr. Inclusive |
|------------------|-----------------|-----------------|
| Contingency, \$  | \$2.8M          | \$2.8M          |
| Cost to Complete | \$32.1M         | \$44.8M         |
| Contingency, %   | 8.7%            | 6.2%            |

Correlator project carries its own contingency

Mark McKinnon



## External Risk Factors



- NRAO operating budget
  - Project dependence upon contributed effort.
  - Ability of operations budget to absorb personnel (e.g. e2e and CASA) moving from project to operations.
     Ability to support science staff. Plan developed.
- Strength of Canadian dollar
- Correlator funding profile
- Commodity prices
  - Aluminum, steel
  - Gold plating





## Retirement of Risk



- Bulk purchase of half transponders
- Bulk purchase of module interface boards
- M&C software support of transition mode observing, including successful implementation of reference pointing
- Eliminated spurious correlation with redesign of digitizer in DTS
- Solved timing problem between EVLA and VLA antennas
- Solved image rejection problem in 4P downconverter (T301) with new filter design
- Solved aliasing problem in baseband downconverter (T304) that limited sensitivity with new filter design
- Selected appropriate fire protection system for new correlator shielded room



## Project Risks



| • | Failure to stay on manpower curve | \$1.2M |
|---|-----------------------------------|--------|
| • | Correlator peripherals            | \$0.8M |
| • | Contribute to EPO program         | \$0.5M |
| • | Improve RFI protection            | \$0.3M |
| • | Additional module parts           | \$0.3M |
| • | Additional feed costs (S, X, Ku)  | \$0.3M |
| • | Spare correlator boards           | \$0.2M |
| • | Improve phase stability & RTP     | \$0.2M |
| • | Improve wideband OMT              | \$0.2M |
| • | Improve synthesizer (L302)        | \$0.1M |
| • | Correlator installation manpower  | \$0.1M |
| • | Redesign 3-bit, 4Gsps samplers    | \$0.1M |
| • | IF retrofits                      | \$0.1M |
| • | Feed demoisture system            | \$0.1M |



**Risk Analysis** 



- Sum total risk = 4.5M
- Root sum square risk = \$1.7M
- Contingency = \$2.8M. Comparable to value of a year ago.
- Conclusion:
  - Still possible that project can be completed within budget and nearly on schedule.
  - Contingency coverage of risk is marginal, but no urgency now to implement descope options.
- Goal for FY06 is to refine contingency and risk analysis at finer level of detail (i.e. increase contingency and more accurately assess risk).



## Value of Possible Descope Options



- Eliminate receiver bands:
  - X (8-12 GHz) \$1.0M 2009 (date to decide on descope)
  - Ku (12-15 GHz) \$1.3M 2009
  - S (2-4 GHz) \$1.4M 2007
  - Ka (26-40 GHz) \$1.2M 2006
- Purchase receiver components, but assemble/install as part of operations. Labor savings to project are:
  - X \$0.2M
  - Ku \$0.2M
  - S \$0.4M
  - Ka \$0.2M
- Eliminate solar observing mode
- Transfer project-funded e2e effort (6 FTE years) to operations budget

\$0.7M

\$0.2M

Mark McKinnon



## Other Possible Descope Options



- Reduce number of antenna retrofits
- Shut down the VLA part of the array for some time period
- Halve the observing bandwidth