

EVLA Technical Performance

Rick Perley

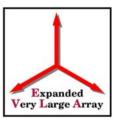
With much essential help from Barry Clark, Ken Sowinski, Vivek Dhawan, Walter Brisken, George Moellenbrock, Bob Hayward, Dan Mertely, and many others.

Rick Perley

NSF Mid-Project Review May 11 - 12, 2006 1

Performance Requirements

- Chapter 2 of the Project Book gives the antenna and array performance requirements.
- Ultimately, all EVLA antennas must perform at these levels.
- Our efforts in the past 18 months have been focused on:
 - Establishing basic performance of the EVLA antennas 13, 14, and 16.
 - Identifying and debugging a wide range of interesting (!) problems...
 - Developing methodologies for efficient and effective performance checkout procedures



EVLA Testing Team

- The (unofficial) testing team:
 - Ken Sowinski, Rick Perley, Barry Clark, Vivek Dhawan, Walter Brisken, George Moellenbrock, Mark Claussen.
 - In addition, Chris Carilli, Claire Chandler and Michael Rupen have included EVLA antennas into their science runs.
- A very intensive process tests done daily, results back to engineers/programmers within hours.
- An amazing range of problems uncovered and repaired.
 Two major areas: Performance and Reliability.
- We believe we are 'over the hump' in tracking down reliability and performance issues.
- Undoubtedly some remaining subtle problems.

• EVLA requirements for pointing:

-6" blind, 2-3" referenced (RSS).

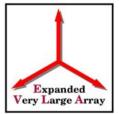
- Based on performance of best VLA antennas.
- EVLA antenna pointing problems now rectified, referenced pointing now enabled.
- Based on the four EVLA antennas, we are quite confident the requirements will be met via implementation of an improved model.
- `Super-Sidereal Tracking' mode not implemented. Awaits identification of necessary funding.

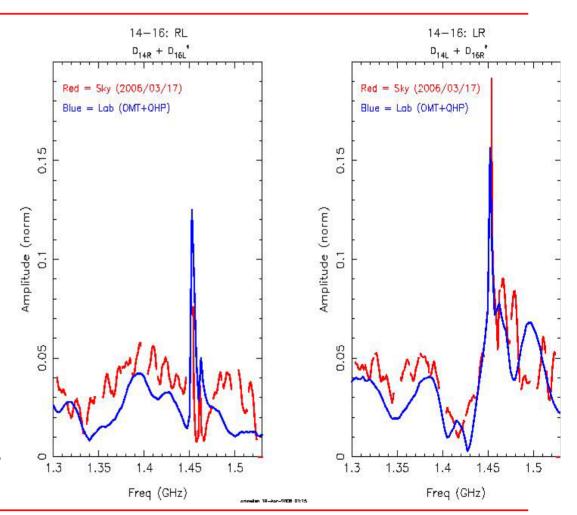
Antenna-Efficiency

- Table shows requirements and status.
- Observations made on known standards calibrated with hot/cold loads.
- We are on track to meet all requirements.

Band	Req.	Obs.
L	.45	.4350
S	.62	TBD
С	.60	.5565
X	.56	TBD
U	.54	TBD
K	.51	.4856
А	.39	TBD
Q	.34	.2629*

* Observations made without optimal focus or subreflector position. Further holography required.




- Linear: Requirements set to give < 5% crosspolarization response, stable to < 1% over 12 hours.
 - C-Band: Easily meets specs at 4850 MHz, but we are using VLBA-style polarizer. We await the new OMT/Hybrid combination.
 - L-Band: Have new hybrid, but with old VLA OMT.
 Results are encouraging (following slides).
 - **K, Q Bands:** EVLA polarizers in place. No problems found, and none are expected.
- **Circular:** Set by beam squint no change from VLA expected. Measurements to follow.

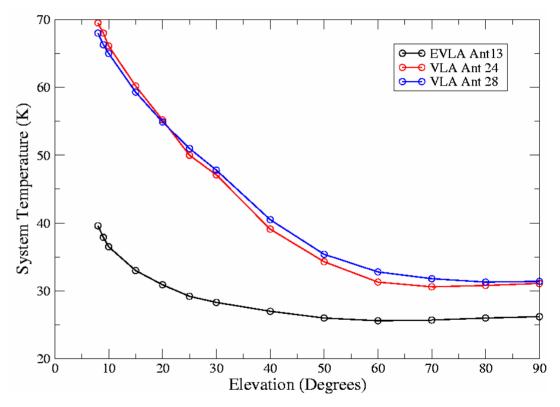
L-Band Polarization (George Moellenbrock)

- Recent sky tests (Red) show acceptable cross polarization.
- Spike at 1450 MHz due to trapped modes in VLA OMT
- Blue lines show predicted polarization from lab measurements.

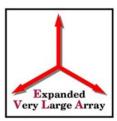
NSF Mid-Project Review May 11 - 12, 2006

Receiver Tsys

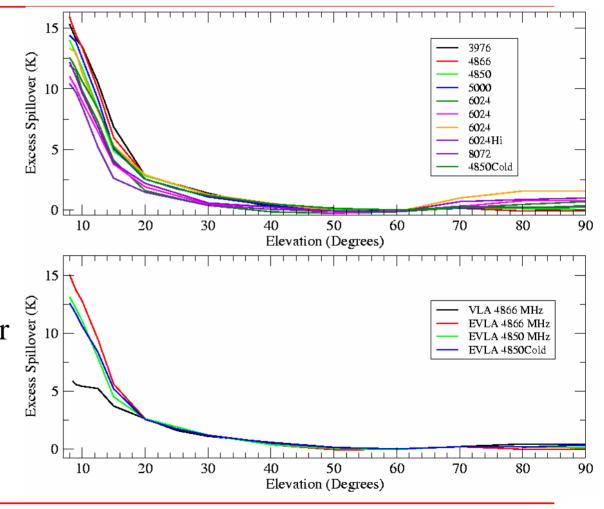
- System Temperature: Results in Table.
- All measurements made with hot/cold load calibration, at output of FE or IF on the antenna.
- Requirements are met, especially at high frequencies.


Band	Req.	Obs.
L	27	28
S	27	TBD
С	27	24
X	31	TBD
U	38	TBD
K	61	45
A	55	TBD
Q	70	65

Tsys vs. Elevation L-Band



- A major problem with VLA L-band is strong elevation dependence on Tsys.
- EVLA feed has much better elevation performance.
- This improvement will mostly offset the reduced efficiency of EVLA feed.



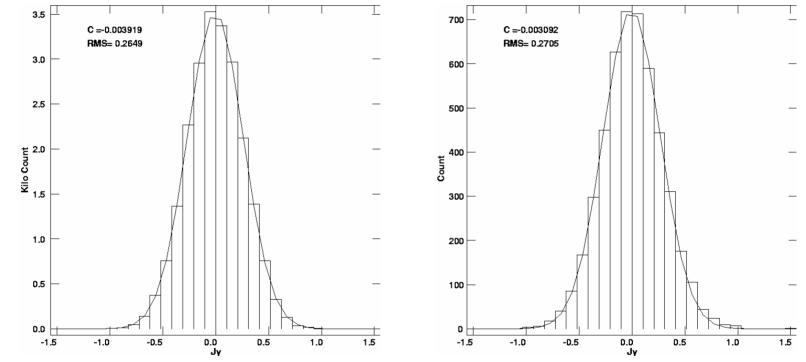
Variation with Elevation C-Band

• At C-band, the feed shows excellent performance from 4 to 8 GHz.

• Some excess spillover at very low elevations

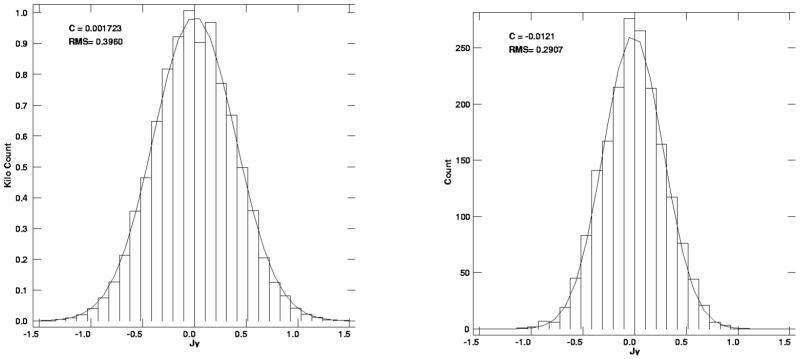
NSF Mid-Project Review May 11 - 12, 2006

Interferometer Sensitivity

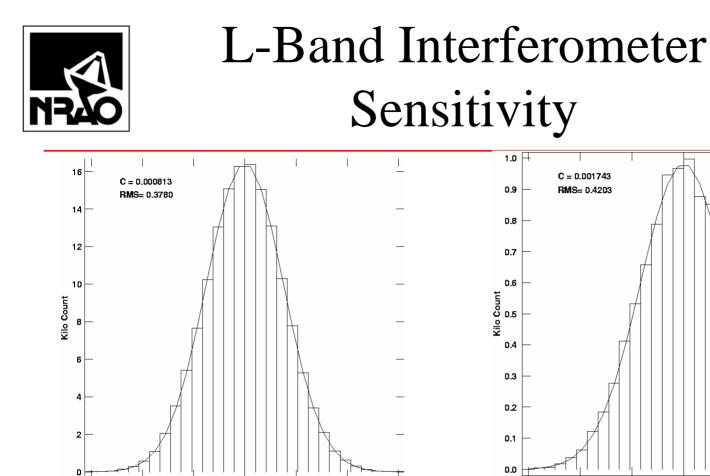


- Although antenna performance is at or better than requirements, the 'bottom line' is the sensitivity of the interferometer.
- Initial interferometer observations revealed numerous problems, traced to aliased responses. We believe all are now rectified.
- Some sensitivity issues remain, especially at L-band. These are being investigated now.

X-Band Interferometer Sensitivity



- Left: VLA typical noise histogram
- Right: EVLA antennas 13, 14, 16, 18
- EVLA antennas same as VLA as expected.



C-Band Interferometer Sensitivity

- Left: VLA average
- Right: EVLA antennas 13, 14, 16.
- EVLA antennas notably better than average VLA antennas.

- 1.5 -1.0 -1.5 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 We expect performance similar to VLA, but with much less elevation dependence.
- Left: median VLA, Right: EVLA, at 1385 MHz, El = 80.
- 10% worse than VLA average at zenith.

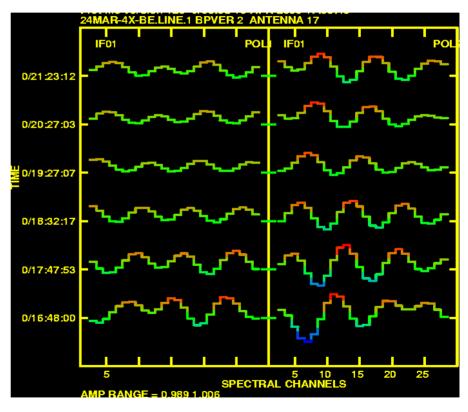
High Frequency Sensitivity

- Accurate measures of K and Q band sensitivity require optimum conditions:
 - Clear skies
 - Low winds
 - Dry atmosphere
 - Referenced pointing
 - Short baselines (preferred).
- We have yet to obtain all of these at one time on any given test.
- We will likely have to wait until the fall for an accurate test.

- No specific requirement on temporal gain stability.
- Tsys monitoring requirement of 0.5% accuracy.
 - Needed to compute visibility amplitude from correlation coefficient.
- Calibrator observations show (short-term) amplitude stability as good as VLA this meets the 0.5% requirement.
- Some issues of Tsys monitoring stability remain. Occasional unexplained deviations observed, cause as yet unknown.
- Long-term amplitude stability appears to be good, but more data are required for definitive estimate.

Phase Stability

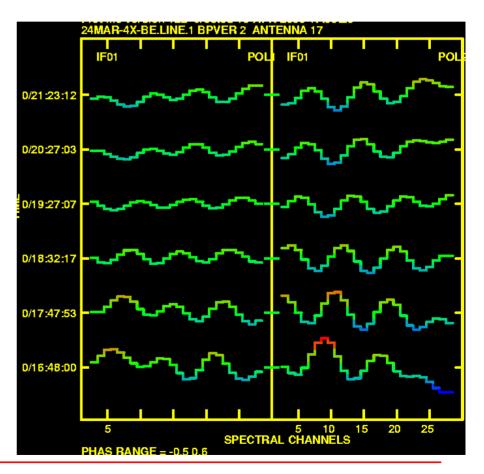
- Observed (short-term) phase as good as VLA antennas.
- Long-term phase stability check requires roundtrip phase correction, and implementation of VLA weather.
- Neither is yet employed.
- R-T phase correction system better than VLA's.
- Detailed tests ongoing, and results are encouraging. (Vivek Dhawan leads this effort).


- A very difficult spec has been set: 0.01% amplitude, and 0.007 deg phase stability, on
 - Timescales less than 1 hour, and
 - Frequency scales less than 0.1% of observing frequency.
- Recent observations of 3C84 at X-band show we're close – and probably limited by VLA base-band hardware.

VLA Bandpass Amplitude Differential Hourly Snapshots

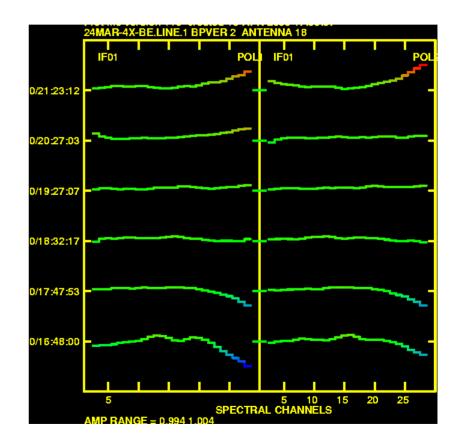
- VLA antenna 17 amplitude, X-Band
- 4 MHz Ripple due to waveguide reflections.
- Magnitude ~ 0.5%
- Typical for all VLA antennas.

RCP



VLA Phase

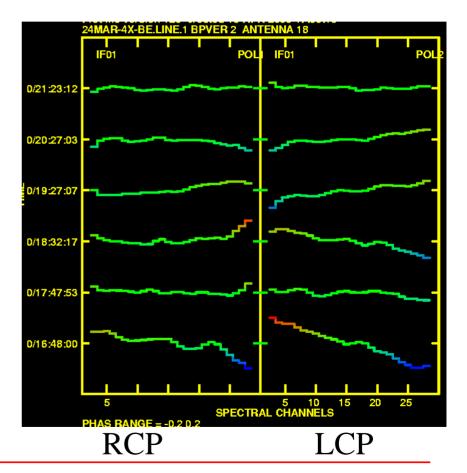
- Showing VLA ripple in phase.
- Magnitude ~ 0.5 degrees.



EVLA Antenna 18 Amplitude Results



- Amplitude stability excellent.
- No sign of VLA's 3 MHz ripple.
- Full range is 0.4%.
- Away from baseband edge, range is ~.05%.
- Variation likely due to VLA baseband filter.



EVLA Antenna 18 Phase

- Hourly observations of bandpass at X-band.
- Mean bandpass removed.
- BW is ~10 MHz
- Phase peak range 0.2 degrees.
- Away from baseband edge, phase range is 0.04 degrees.
- Instability origin unclear, but unlikely to be FE.

- Other PB requirements (passband gain slope, ripple, antenna primary beam, etc.) remain to be measured.
- Procedures to do these are well known, and will be implemented this year.
- Overall we are satisfied with performance, but there is much yet to be done.
- We expect to meet all hardware performance requirements!

EVLA Antenna Checkout

- We have not yet implemented a standard EVLA antenna performance checkout procedure.
 - Focus has been on establishing basic performance, and chasing down a wide range of problems.
- A checkout plan has been developed by Claire Chandler, Chris Carilli and me
- Methodologies are well understood we have very experienced people in place!
- The plan is to begin this procedure this fall.
- We would like to assign this task to a new person – not yet identified. A post-doc would be ideal.