

EVLA NSF Mid-Project Review

System / Antenna Status

Jim Jackson, Hardware Systems Engineer

5/8/2006 Jim Jackson NSF Mid Project Review 11-12 May 2006

- Electronics
- System
- Antenna
- VLA Site

System Status Electronics

Electronics currently in (or ready for) production

- D301-4 DTS Module excluding 3-bit digitizer PCB
- D351 DTS De-formatter
- F320 Front End Transition Module
- L300 Synthesizer Reference Generator
- L301 12-20 GHz Synthesizer
- L304 LO Reference Receiver
- L305 / L350 Reference Generators
- L351 Offset Generator
- L354 LO Driver
- L355 Digital Timing Distributor
- M304 Module ID
- P301/302 DC/DC Power Supplies
- T302 LSC Converter
- T303 UX Converter
- T305 Baseband Converter Digital
- -48 VDC Power System
- Front End Card Cage
- Main Shielded Equipment Racks

Represents:

68% of Antenna Electronics

80% of Central Electronics

5/8/2006 Jim Jackson NSF Mid Project Review 11-12 May 2006

System Status Electronics

Modules in final design – ready for production by 1 July 2006

- F317 Front End Controller
- L353 LO Transmitter
 - Motherboard to integrate design
- M301 Converter Interface
- M302/M303 Utility Modules
- P350/P351 DC/DC power supply
 - PCB Mod to support N+1 redundancy
- Power Dist. Board for Central LO
- T301 4/P Converter
 - Corrects 1024 MHz Isolation Issue on RF PCB
 - Solar Attenuator PCB to be developed
 - module can be produced without this PCB

- In final testing
- PCB Revision
- In final testing
- In final testing
- PCB Revision
- New PCB Design
- PCB Revision

System Status Electronics

Modules in final design – ready for production by 1 July 2006

- T304 Baseband Converter
 - New Total Power Detectors
 - New Filter Arrangement
- L302 10.8-14.8 GHz Synthesizer
 - New MIB / DDS FPGA firmware developed
 - Updated units being tested in Antenna 18

- In final testing

- In final testing

Represents: 27% of antenna electronics, 20% of central electronics

System Status Front-Ends

Front Ends

- 4 Band
 - Complete Using existing VLA receiver
- P-Band
 - Mostly complete Using existing VLA receiver
 - Modification required to stop LNA oscillations in S,C and X-Bands
- L-Band
 - Horn complete and in production
 - Prototype OMT and receiver in lab testing issues as mentioned
 - Balanced amps from CDL in use on existing and prototype receivers
- S-Band
 - Half scale feed horn built and currently being tested
 - Receiver to be developed, CDL wideband amps now available
 - Wideband OMT awaiting L-Band results S-Band will use scaled down version
- C-Band
 - Horn complete and in production
 - Interim receiver in production (final receiver minus wideband OMT)
 - OMT design complete Awaiting L-Band results C-Band will use scaled down version

System Status Front-Ends

Front Ends

- X Band
 - Currently using existing VLA receiver
 - New X-Band will be last to be developed funding permitting
- Ku-Band
 - New feed Horn to be developed
 - New Receiver to be developed will be based on K-Band design
- K-Band
 - Using Existing VLA Feed and Receiver
 - Added block converter and modified LO/IF chain
 - In production
- Ka-Band
 - Horn in production
 - Receiver development underway
- Q-Band
 - Using Existing VLA feed and receiver
 - New MIMIC post amp and block converter

System Status Test Racks

- EVLA Integration Lab in AOC
 - Two complete LO systems
 - Antenna electronics racks
 - Identical Infrastructure to site
 - Fiber Ethernet switches
 - 8/14/22Km fiber spools
 - -48 VDC power supply system with batteries
 - LO Reference from Maser Lab
- Test Capabilities
 - All Antenna LO/IF/Fiber modules
 - Antenna M&C system
 - Facilities for connection of operational front-ends (including cryogenics)
 - Actual simulation of LO round trip phase
 - Can actually run simulated observations using EVLA software

System Status Central LO Racks

- Central LO Racks
 - 5 DoD "Tempest" certified RFI shielded equipment racks
 - Located in VLA Electronics Room
 - -48 VDC N+1 redundant power supply with batteries (1 Rack)
 - Central LO electronics common to all EVLA antennas (1 Rack)
 - Generates all reference signals for antennas and WIDAR correlator
 - Synchronizes EVLA system to VLA system during transition
 - Second redundant system not yet implemented
 - Antenna LO distribution and round-trip-phase monitoring (3 Racks)
 - Transmits LO and timing signals to 28 antennas
 - Measures LO round-trip-phase to each antenna

- Antenna Retrofits
 - Mechanical refit procedures
 - Site personnel have procedures established
 - Last two refits (antennas 18 & 24) have proceeded smoothly
 - New antenna component designs proven and in use
 - New upper feed cone assembly
 - Feed / receiver mounting systems
 - Electrical / HVAC upgrades
 - Cryogenic upgrades new compressor & platform, Scott-T boxes, etc...
 - Shielded equipment racks
 - Fiber optic cable wraps
 - No adverse effects on antenna structure or performance
- Remaining antenna issue
 - Feed moisture control
 - Several options exist
 - Low cost options being explored first

- Antennas 13, 14 and 16
 - Have received full EVLA refit
 - Turned over to operations for initial scientific use
 - Using 2Gsps 8-Bit digitizers for transition
 - L,C,X,K and Q bands available with 4 IF channels
 - 4 and P bands available on antenna 14
 - Total power detectors and ALC to be added shortly
 - Antennas 14 and 16 have prototype LO hardware
 - Software compatible, retrofit Mid CY 2007
 - Antennas 13 has production LO hardware
 - Tests and evaluation on-going
 - Scientists being encouraged to use antennas in observations

- Antenna 18
 - Operating since Mid-March w/ 2 IF's at X-band
 - Fringes obtained within minutes of first power-up
 - X band now available w/ 4 IF's
 - 4,P,L,C and K bands available mid May
 - Mostly production hardware
 - Temporary test bed for updated hardware
 - New L302 10.8-14.8 GHz synthesizer firmware
 - M301 converter interface for band switching
 - T301 with updated RF Board
 - T304 baseband converter with ALC
 - Caused minor delay in outfitting
 - Turn over to operations likely in early June

- Antenna 24
 - Mechanical refit complete late March
 - Outfitting electronics now
 - First fringes at X-Band expected mid May
 - New M302/M303 utility modules
 - First Antenna with no copper wire communication
 - All communications and safety thru Ethernet fiber
- Antenna 26
 - Currently in barn for azimuth bearing change
 - VLA electronics stripped early April
 - EVLA refit to begin by 1 June

System Status Correlator Room

- New Screen Room for WIDAR Correlator
 - 48' x 47' 100dB shielded room
 - Power and cooling to support 250KW load of correlator & back-end
 - Room installed, RFI tested and accepted from manufacturer
 - Electric panels, fire alarm and fire suppression systems installed
 - Raised flooring currently being installed
 - Fiber/RF coax penetrations installed
 - On schedule will be ready well in advance of WIDAR arrival
- Old correlator room
 - Deformatter and fiber racks installed and in use
 - Location of fiber optics and DTS deformatters during VLA to EVLA transition
 - Equipment to be moved into WIDAR correlator system when commissioned
 - Deformatters feed into VLA D-racks during transition
 - Location of new EVLA computing and networking equipment

System Status VLA Site Infrastructure

- Fiber Optics
 - All underground cable installed
 - Antenna pad boxes installed as needed
 - Most control building fiber infrastructure in place
 - Fiber lab in place
 - Full suite of test and assembly equipment
 - Fabrication of cables and assemblies
 - Full capability & training for testing, maintenance and repair
- Power / HVAC
 - Upgraded to support new EVLA systems
- Buildings
 - New cold storage building built to support EVLA project

Questions?

5/8/2006 Jim Jackson NSF Mid Project Review 11-12 May 2006