

Post-processing

Bryan Butler, for Joe McMullin

Mission:

• Primary purpose is to provide facilities for postobservational scientific reduction of ALMA and EVLA data

Facilities must be:

- Scientifically complete/correct
- Robust
- Acceptably fast
- Easy to use
- Able to support both scripted and interactive use

Requirements

Requirements Key Areas:

- General Requirements and Interaction
- Interface
- Data Handling
- Calibration and Editing
- Imaging
- Data Analysis
- Visualization
- Special Features

Driven by requirements documents:

- ALMA Offline Data Processing Requirements
- EVLA Data Post-processing Software Requirements
- 2/3 of requirements are common!

Detailed tracking on the combined projects' requirements (common to both projects and the deltas between projects)

Packages:

- Legacy AIPS++ code base for development (changing to CASA more on that later)
- AIPS used for validation, algorithm and display development (e.g., automated flagging), support of EVLA hardware tests

- Users reluctant to embrace AIPS++ as a post-processing package, based on problems with robustness, speed, functionality, and the user interface
- Decision to halt public releases of AIPS++ made in 2004
- Now concentrating on above problems; also working on modularity of code, a change from Glish to Python as the binding scripting language, and help/documentation
- New package named CASA Common Astronomical Software Applications
- Care being taken regarding releasing the new package openly, to avoid the problems of the past

Framework Improvement

AIPS++:

- Glish interface; relatively unknown, unsupported outside of NRAO
- Tasking system based on Glish
- GUI system based on Glish/Tk; limited widgets, not robust!
- Difficult for external developers to contribute
- Multi-CD binary distribution
- Large monolithic libraries with cross dependencies
- Freeze 2nd half of 2006

CASA:

- Hierarchical set of small libraries with clearly defined dependencies
- Inherits all application code improvements in robustness and performance.
- Smaller memory footprint/startup time
- Python interface (community standard); IPython
- Binding to Python, ACS; other frameworks enabled

- Has been tested internally by NRAO scientists in preparation for the 2006 ALMA test.
 - Early demos provided bi-monthly to the NAUG at:
 - http://casa.nrao.edu/gettingstarted.shtml
 - 6 scientists used and reported on it enabled deployment for the ALMA test.
- Was deployed and reviewed by four ALMA testers
 - http://projectoffice.aips2.nrao.edu/ALMA2006.01/ALMA2006.01.html
- The user interface was reviewed and commented on by 8 NRAO scientists
 - User Interface is being refined/further developed based on the user interface report:
 - http://projectoffice.aips2.nrao.edu/uiwg-report.pdf
- Will be used exclusively by the ALMA Pipeline Heuristics Team (second half of 2006)
- CASA will have replaced AIPS++ within NRAO (developers and NAUG testers) this year.

2006

- NRAO: NAUG testing (AIPS++)
- Community: Project tests
- ALMA: external science testing: +single-baseline commissioning test) (CASA)
- ALMA: external science testing: +single dish reduction (CASA)
- ALMA: commissioning support (CASA)
- ALMA/EVLA: user interface review (CASA)
- EVLA: external science testing: +full polarization imaging; antenna pointing calibration
- 2006.5 AIPS++ frozen
- ALMA: Pipeline Heuristics Use of CASA
- NRAO: CASA initial beta deployment (internal)

2007

- NRAO: User support (CASA)
- ALMA: commissiong support (CASA)

- EVLA: external science testing: + RFI/automated flagging (CASA)
- ALMA: P1 SSRs complete
- NRAO: CASA second beta deployment (internal)

2008

- EVLA: external science testing: + wide band calibration imaging (*CASA*)
- ALMA: commissioning support
- EVLA: P1 SSRs complete
- **Community: CASA** mature limited release to outside users

2009-2010

- ALMA/EVLA: commissioning support
- Community: CASA released/distributed for early ALMA/EVLA science

2011

 Community: CASA released/distributed; full user support (ALMA/EVLA: P1/P2s)

Ability to Deliver

The Science Software Group (SSG) has demonstrated the ability to meet major milestones:

- Heavily reviewed in annual VC and UC meetings, as well as ALMA CIPT, ASAC and EAC reviews
- Of 21 major milestones presented at ALMA CDR2 in July 2004 for the period up until now, 15 were met on time, 2 were changed and met on time, and 4 were met, but late
- Over past three years, 3 formal ALMA CDRs, 4 formal ALMA releases, 3 formal ALMA tests, and 1 formal EVLA test have been successfully completed
- Note that EVLA benefits substantially from ALMA-driven development of CASA, since common requirements are met (remember that 2/3 are common), as well as the higher-level requirements of robustness, speed, and usability.

- The SSG is a group within the Interferometry Software Division (ISD) - key personnel for ISD and SSG are:
- G. van Moorsel (EVLA), B. Glendenning (ALMA) Heads of Computing; ISD Co-managers
- M. Rupen (EVLA), Debra Shepherd (ALMA) Project Scientists for Computing
- J. McMullin, K. Golap Group Management
- S. Myers Group Project Scientist

ISD functions now in the new e2e Operations Division:

• N. Radziwill, E. Fomalont - manager and scientist

SSG - Staffing

- NRAO: 5.0 FTEs (including management; split 60/40 between ALMA & EVLA)
- **EVLA-specific:** 1.5 FTEs (Imaging algorithms, Data flagging)
- **ALMA-specific:** 5.5 FTEs (Application development, Data Model, Data Model Interfaces, Data Capture process)
- **NSF grant:** 1.0 FTE (visualization; concludes 2007.8)
- More detail on backup slide, if needed

- Wide field imaging
 - W-projection algorithm: An improvement over the image-plane faceted algorithm: 3-10x faster
 - Implemented [Done/Tested] (EVLA Memo 67; Cornwell, Golap, Bhatnagar)
- Primary Beam (PB) corrections
 - PB-projection algorithm [Done/Testing]
 - PB/In-beam polarization correction (EVLA Memo 100; Bhatnagar, Cornwell, Golap)
 - Pointing SelfCal [Testing] (EVLA Memo 84; Bhatnagar,

Cornwell, Golap)

- Initial investigation for deconvolution [Done] (EVLA Memo 101, Rao-Venkata & Cornwell]
 - Multi-frequency Synthesis (MSF)/Bandwidth synthesis/Chan. Avg. inadequate for EVLA 2:1 BWR
 - Hybrid approach promising for DR ~ 10000
- Scale & frequency sensitive deconvolution [Work in progress]
 - The code in C++ works but as a Glish client
 - Extend it for frequency dependent components

Wide Field Imaging

• W-projection: Adequate for EVLA imaging

PB Corrections - Stokes I

• Correction for PB rotation & polarization effects

• Correction for PB rotation & polarization effects

- NRAO AIPS++ Users' Group (NAUG)
 - Progress reports and tests of most recent internal release
 - Requests for testing and comments
 - First look at python interface
- NRAO Algorithms Working Group (NAWG)
 - Discussion of algorithms and progress
- Includes Myers, Brisken, Brogan, Chandler, Fomalont, Greisen, Hibbard, Owen, Rupen, Shepherd, Whysong, + developers

- EVLA participation in ALMA formal tests
 - Outside ALMA testers with VLA expertise
 - ALMA2006.01-4 (python + single baseline calibration) included Brisken, Owen, Rupen
 - Goals
 - CASA experience
 - Influence common development (interface, for example)

- Joint development of common 2/3 requirements
 - User Interface Working Group (Apr 06)
 - Refine requirements for user interface
 - Myers, Brogan, Brisken, Greisen, Hibbard, Owen, Rupen, Shepherd, Whysong
 - Draft results on Web
- Joint planning
 - Draft proposal for gradual shift of CASA from development to user support, including scientific staff use, documentation, and hand-holding

- May-July 2005: w-projection
 - First step in the Big Imaging Problem
 - Generally good performance (speed, robustness) but lots of ease-of-use issues
 - Myers, Brisken, Butler, Fomalont, van Moorsel, Owen
- Currently concentrating on
 - Long lead-time items (high DR imaging)
 - Hardware driven items (prototype correlator)
 - Shift to user-oriented system

EVLA Fall 2006 Test

- User interface
 - Revised UI (tasks etc.)
 - Revamped module organization
 - New documentation system
- Reading and writing SDM
 ASDM → CASA MS → UVFITS → AIPS
- Basic calibration, including calibration of weights
- "Testers' choice" of data sets, in addition to common ones

- Data examination
 - Basic plots (mostly a survey of existing code)
 - First look at stand-alone viewer (qtview)
- Imaging
 - Widefield imaging (w term, multiple fields)
 - Full polarization imaging
 - Pointing self-calibration

- Not a formal test
- NAUG and "dedicated" staff
- User interface discussions/testing
- Documentation
- "EVLA stress test:" basic calibration and imaging of a many-channel data set, both in CASA and in AIPS

- "Format test" (SDM)
- Focus on calibration and data examination
 - Flexible, simple-minded, quick displays
 - Wideband issues
- Driven by need to support initial basic modes (like big spectral line cubes), and to learn from the new hardware (WIDAR + wide-band feeds)

- Any reduction in staffing levels within the SSG can impact delivery schedule
 - Staff retention is key; AIPS can potentially be used to bridge any delivery schedule gap
- The necessity to do both software development and active user support stretch already thin resources
 - Convert to NRAO staff scientists being front-line user support, just as for AIPS
- User interfaces are notoriously difficult to develop (and gain acceptance)
 - Extensive testing and feedback into development is critical
- Significant scientific staff resources are required for testing, support, and documentation; not present currently
 - NRAO intends to redirect or hire new scientific staff to address this
- Science Data Model complexity can impact delivery schedule
 - The SDM must be critically evaluated for propriety and agreed to by both ALMA and EVLA (and potentially GBT)
- Algorithm development and data rates and computation
 - Algorithm development group (NAWG) work ongoing; data rate and computation problems addressed with additional hardware

Resources - Details

	FTEs			Comments
NRAO (SSG)	4.75 [5.75]			Project Scientist: Steve Myers
Sanjay Bhatnagar	0.75	Astronomer	Algorithm Development (EVLA)	
Kumar Golap	0.75	Astronomer	Application Code	Application code: common to ALMA&EVLA
Joe McMullin	0.75	Astronomer	Management	
George Moellenbrock	0.75	Astronomer	Application Code	
David DeBonis	1.0	Software Engineer	System	Began 2004-05; depart:2006-01
Darrell Schiebel	1.0	Software Engineer	System	
Wes Young	0.75	Software Engineer	System	
ALMA	4.3 [5.3]			2.3 FTE in-kind
Gary Li	1.0	Software Engineer	Application Code	0.5 FTE in-kind; Began 2004-03
Raymond Rusk	1.0	Astronomer	Application Code	
Tak Tsutsumi	1.0	Astronomer	Application Code	1.0 FTE in-kind; Began 2005-03 (ACA)
Honglin Ye	0.5	Software Engineer	Application Code	Began 2005-07 (visualization)
Michel Caillat	0.8	Software Engineer	ALMA Data model, simulation	0.3 FTE in-kind
Francois Viallefond	0.5	Astronomer	ALMA Data model, simulation	0.5 FTE in-kind
Heiko Hafok	0.5	Astronomer	ALMA Data Capture	Began 2003-12
NSF grant	1.0			
David King	1.0	Software Engineer	visualization	(concludes 2006-05)
Other	0.5			
Urvashi Rao	0.5	Astronomer	Algorithm Development (EVLA)	Began 2004-09 (9 month appt)
Total	10.05 12.55]			

Bryan Butler