



#### The EVLA Correlator

#### P. Dewdney

Herzberg Institute of Astrophysics National Research Council Canada







#### Outline

- 1. Correlator Performance Goals
- 2. Hardware Progress
- 3. Software Progress
- 4. System Progress
- 5. Prototype Testing
- 6. Installation Estimates
- 7. Funding, Budget & Schedule
- 8. Risk Issues



Canada



## Key EVLA Processing Capabilities

## Deep Imaging Polarization

- ✓ 8 GHz Bandwidth (dual polarization).
- ✓ Full polarization processing.
- ✓ Wide-field imaging.

#### Narrow spectral lines Wideband searches

- ✓ 16,000 channels at max. bandwidth (BW).
- ✓ >10<sup>6</sup> channels at narrow BWs.
- ✓ Spectral resolution to match any linewidth.
- ✓ Spectral polarization (Zeeman Splitting).

# Flexibility Many resources

- ✓ 8 tunable 2 GHz wide bands.
- ✓ Each band 16 tunable sub-bands.
- ✓ Sub-band independent spectral resolution
- ✓ Simultaneous line and continuum.

#### High time resolution

- ✓ 1000 pulsar "phase bins".
- ✓ "Single-dish" data output to user instruments.
- ✓ Very fast time sampling ( $<20 \mu s$ ).

## NRC-CNRC EVLA Correlator System Diagram



## Significant Events Since Dec. 2004

- Correlator Chip CDR Jan/05
- Software Review Jan/05.
- Correlator Preliminary Design Review July/05.
- PCB fabricator contract signed Jan/06.
- Prototype Correlator chip wafers fab'd Feb/06.
- Software Review Mar/06.
- Prototype chip delivery early Jun/06.
- Baseline Board prototype delivery Jun/06.
- Station Board prototype delivery est. Aug/06.



#### Hardware Progress

- FPGA's
  - All FPGA's are designed, including the Filter Chip.
- Station board
  - Layout is close to completion, including Design-for-Manufacture approval.
  - Presently undergoing signal integrity simulation.
  - Prototype fabrication order expected in June.
- Baseline Board
  - Prototype fabrication under way.
- Phasing board
  - Draft specification (RFS) released.
  - Deferred in time but not reduced in priority.
- Other boards
  - Prototypes for all other boards already fabricated.
  - Fan-out board needs redesign for better signal margins.
- System
  - Racks designed and prototyped; thermal analysis done.
  - Power system RFP draft written.
  - Reliability analysis system in place first draft of analysis complete.

#### **Station Board Layout**

- "Daughter" Board brown.
- Power Supplies pink.
- FPGA's Green
- Connectors light brown and white.
- ~5000 parts.
- 140 required for EVLA.





Size: ~510 x ~410 mm

#### **Baseline Board Layout**

- Green chips front side.
- Blue chips back side.
- 8 x 8 array of correlator chips.
- LTA chips on the back side.
- Recirculation Controller.
- ~12000 parts
- ~177 required for EVLA.

NRC - CNRC





#### Software Progress

- GUI-based prototype testing software
  - Complete enough to be useful already.
  - All FPGA's covered except Phasing Board.
  - Provides "engineer's view of correlator system.
    - Permanent maintenance value.
  - Top-level GUI's now under development.
- Virtual Correlator Interface
  - Well defined except for correlator output area.
  - Communications protocol well defined except for transport layer.
- Master Correlator Control Computer (MCCC)
  - Work deferred for GUI development.
  - Architecture/scope well defined.
- Real-time control software
  - "CMIB" processor on each board.
  - Operating system has been working for a long time.
  - XML-based communication with "outside world".
  - Drivers for FPGA's are well under way.



#### NRC - CNRC

#### Correlator Software System Context





## Correlator System GUI





#### Individual Rack





#### Station Board Top Level



#### NRC - CNRC

#### Filter Control GUI





## Correlator Software People

- Sonja Vrcic (Penticton)
  - Coordinates overall design and specification.
  - Virtual Correlator Interface (VCI) definition.
  - Master Correlator Control Computer (MCCC) S/W.
- Bruce Rowen (Socorro)
  - Correlator hardware control S/W (CMIB).
- Kevin Ryan (Socorro)
  - GUI development and hardware control S/W.
- Martin Pokorny (Socorro)
  - Correlator Backend software.
- Michael Rupen, John Romney, Bryan Butler, Ken Sowinski, Barry Clark, Bill Sahr (Socorro)
  - Advisory capacity.



#### Correlator-related Software Issues

- Correlator output: ALMA Science Data Model (ASDM) must be qualified for EVLA use.
  - On the surface ASDM looks all right in the sense that additions can be made to meet EVLA requirements.
  - Is ALMA effort required and is it available?
  - This issue is to be addressed later in the series of presentations.
- Preliminary plans to add "blocks" in the Correlator Back End (CBE).
  - Additional Ethernet Switch and output Fast Data Formatter computer(s).
  - Formatting to ASDM spec's will probably take place in the Fast Data Formatter.
  - Details to be worked out.
- Virtual Correlator Interface (VCI) Transport protocol is to be defined.
- Potential unknown throughput issues could arise.





- NRAO work on correlator room is progressing rapidly.
- Design of overall room layout is complete.
- Environmental specifications have been developed.
  - Air flow & temperature: ~1700 cfm per rack, 15 °C.
  - ElectroStatic Discharge (ESD)
    - 90 nm devices used extensively (<1/1000 thickness of human hair)
    - Humidity specs.
    - Strict handling and servicing procedures.
  - Air quality
    - ISO 14644-1 class 8 + MERV 13 filter.
- Racks
  - "Thermal prototypes" have been built and tested.
  - "Mechanical prototypes" ditto.
  - Preliminary fabrication plan is being developed.
- Preliminary installation plan is being developed.
- Power plant specifications/RFP draft written for 2006 acquisition this fiscal year (ends Mar 31/07).

#### NRC - CNRC

## Correlator Rack Layout









#### Correlator Room Layout



#### NRC - CNRC

## ElectroStatic Discharge (ESD)





## Correlator Testing

- Production correlator chip tests
  - Functional acceptance test by supplier using DRAOsupplied equipment.
    - At speed, but not over temperature range.
  - DRAO lab tests: special jig to be fabricated.
    - HALT/HASS tests being investigated (advanced version of "burn-in").
- Unit PCB hardware tests during production:
  - Fast functional tests performed at factory in DRAOsupplied equipment.
- Unit hardware tests after acceptance
  - HALT/HASS tests of circuit boards (or equivalent).
  - Extended functional tests.



#### Correlator Testing (cont'd)

#### System Tests

- Prototype Stage
  - Extended testing/debug cycle in lab all functions.
  - Many self-tests, simulated observations.
  - Should confer a high degree of reliability for On-the-Sky tests.
- On-the-sky Tests
  - Final verification of prototype tests designed to be quasiindependent of EVLA S/W.
  - Integration and with EVLA software (continuing process).
- Software Tests after On-the-Sky correlator delivered.
  - Continued testing with hardware that will remain at the VLA.
  - Understand interference (RFI) and the "clues" that the WIDAR system provides.

## Test Configuration – Software View



#### NRC - CNRC

## On-the-Sky Test Setup





## **Preliminary** Installation Estimates

(Note: Dates from Apr/06 Long Term Schedule)

- Q4-06/Q1-07 power supply (-48 V DC).
  - Procurement, installation, training.
  - 40 person-days of NRAO effort.
- Q3/Q4-07 signal cabling.
  - Installation of inter-rack high-speed cabling.
  - 512 pre-fab cables, 3 different lengths; 24 pre-fab power monitor & control cables.
  - 52 person-days of NRAO effort.
- Q4-07/Q1-08 Racks
  - 24 racks, pre-fabricated, tested in Penticton.
  - 24 person days of NRAO effort.
- Q1-08 power cabling.
  - Two cable runs: To distribution panel; distribution panel-to-racks.
  - 20 person-days of NRAO effort.



#### Preliminary Installation Estimates (cont'd)

- Q2-08 control computers, M&C Ethernet
  - MCCC, CPCC, Ethernet switches, etc.
  - 120 VAC power required.
  - 8 person-days of NRAO effort.
- Q3-08 Back-end computers and equipment.
  - Gbit Ethernet system.
  - 20 person-days of NRAO effort.
- Q3-08/Q3-09 Board installation and test.
  - Occasional NRAO effort.
- Total Est. NRAO installation effort:
  - $\geq$  8.2 Person-Months.



## **EVLA Correlator Group**

DRAO-based.



NRAO-based.



## Funding in Canada – No Change

# Aug/03 – Canadian Treasury Board approval of submitted budget (\$C 20M over 5 years).

CAD/USD Conversion Rates (02Jan2001 to 10April2006)

- Most spending in \$US.
- But see risk factors.





## Correlator Projected Spending Profile







Project: EVLA\_LongTerm\_12Apr2005\_v1 Date: Wed 12/04/06

#### Correlator Summary Schedule





## Milestone Progress

Percent Milestones Complete (10Mar2006)





#### Project Management

- Schedule
  - Detailed schedule periodically updated.
  - Near-term (target) schedule updated weekly.
  - Long-term schedule discussed monthly, and cross-checked against detailed schedule.
- Budget
  - Projections updated with schedule.
- Bills of Materials (BOM's)
  - 1000's of components.
  - Maintenance required.



#### Correlator Documentation

- Master Document Tracking Spreadsheet Maintained at DRAO.
- 115 documents written so far, including "Memos".
- Additional 23 documents with designations and titles are anticipated.



#### Principal Design Reviews

- Three Design Reviews:
  - Conceptual (CoDR Nov, 2001)
    - Review architecture and overall design.
  - Preliminary (PDR July, 2005)
    - Review detailed designs before prototypes.
  - Critical (CDR)
    - Review system before "limited production" stage.
    - Scheduled for Q2/Q3, 2007.



## Non-Technical Program Risks

#### Funding

- Original allotment of funds was over five years.
- NRC management was made aware in Aug/03 that this does not fit the project spending profile they decided that internal cash management could deal with the problem.
- Will have to apply for an extension, which in the present climate presents a risk.
- Worst case is that project could hypothetically be halted in April 2008.
- Active cash management at HIA, NRC level.

#### • Schedule slippage?

- Due to a slow start (already happened at the beginning).
- Concerns over procurement processes.
  - This risk is retired. Major procurement contracts are in place except for power supply.
- Technical progress slower than the deliberately aggressive initial schedule.
- "Re-spins" will present additional schedule risk.

#### Inadequate contingency?

- The contingency fractions are much smaller than most high-tech projects.
- Cost risk will be reduced quickly once prototypes are tested.
- Exchange-rate changes have been favourable to date.
- Inflation not being recognized in funding profile?
  - Inflation is a corrosive influence.





## Technical Program Risks

- Technical risk is currently at a maximum
  - Much design effort and prototype expenditure has taken place.
  - Prototype hardware is being fabricated (or about to be fab'd), but not received/tested.
- But ...
  - Considerable design effort expended to reduce technical risk.
    - Finely divided testing schemes for circuit boards every path can be checked independently.
    - Correlator chip underwent an independent test and verification process, including a major simulation campaign after the "place-and-route" stage.
    - A separate Design for Manufacturability (DFM) analysis done for circuit boards results in a major reduction in risk.
- Formal system reliability analysis has been done, and will be updated.
- Funds and design effort has been expended to minimize technical risk.
  - We are optimistic and confident that technical risk is reasonably low.





## Descoping

- The correlator is difficult to split, once designed, and saving is inefficient.
- Have not reconsidered descoping options since the budget is currently "under control".
- If the previously-mentioned non-technical risks become imminent concerns, then descoping options will have to be revisited.



## **Project Summary**

- Are we meeting the required schedule?
  - We are sticking with the original delivery date, although there is now some squeezing of activities towards the end.
- Are we over budget at this stage?
  - Budget is slimly allocated, but we are not over budget.
- Are we planning to deliver on what we said we would do?
  - Yes, with minor improvements.
- What are the major risks at this stage?
  - Hypothetical funding difficulty in 2008.
  - Technical risks should be reduced this year as prototypes are tested.

## End