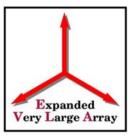


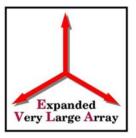
EVLA Data Post-processing: SSG (AIPS++/CASA) Development


J. McMullin

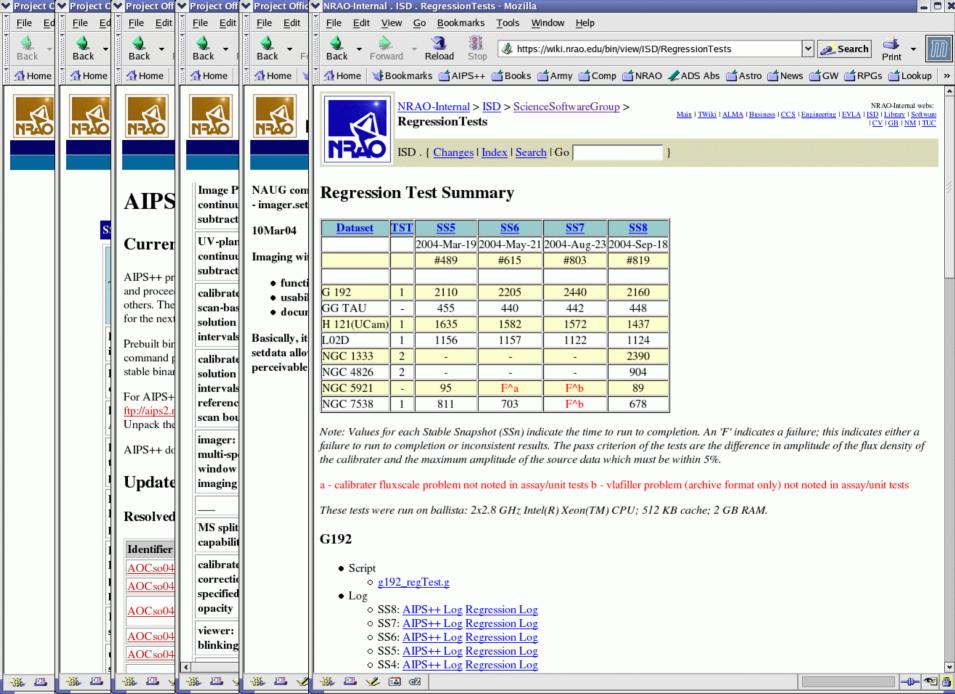
McMullin

EVLA Advisory Committee Meeting December 14-15, 2004

Current Status



- 2004 Planning
 - Initial development focus on core applications, common to both ALMA/EVLA
 - Establish robust, on-time delivery of functionality

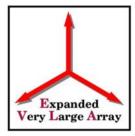

- Status
 - Development plan for Priority 1 scientific requirements.
 - Project Office page for activities, transparency.
 - Nine two-month releases delivered within one week of schedule on average.
 - Established strong feedback loop with internal NRAO scientists (Myers)
 - Established strong feedback loop with external scientists (Shepherd)
 - ALMA TST1 Passed (Feb 2004)
 - ALMA TST1.1 Passed (Nov 2004)
 - ALMA CDR2 passed (Aug 2004)
 - Integrating planning, resources, management between ALMA/EVLA

General Process


- Process
 - integrated development & testing cycles
 - regression scripts & unit/assay tests
 - defect handling
 - documentation
- Integrated Development & Testing cycles
 - tests focus on functionality (before releases)
 - EVLA follow ALMA schedule

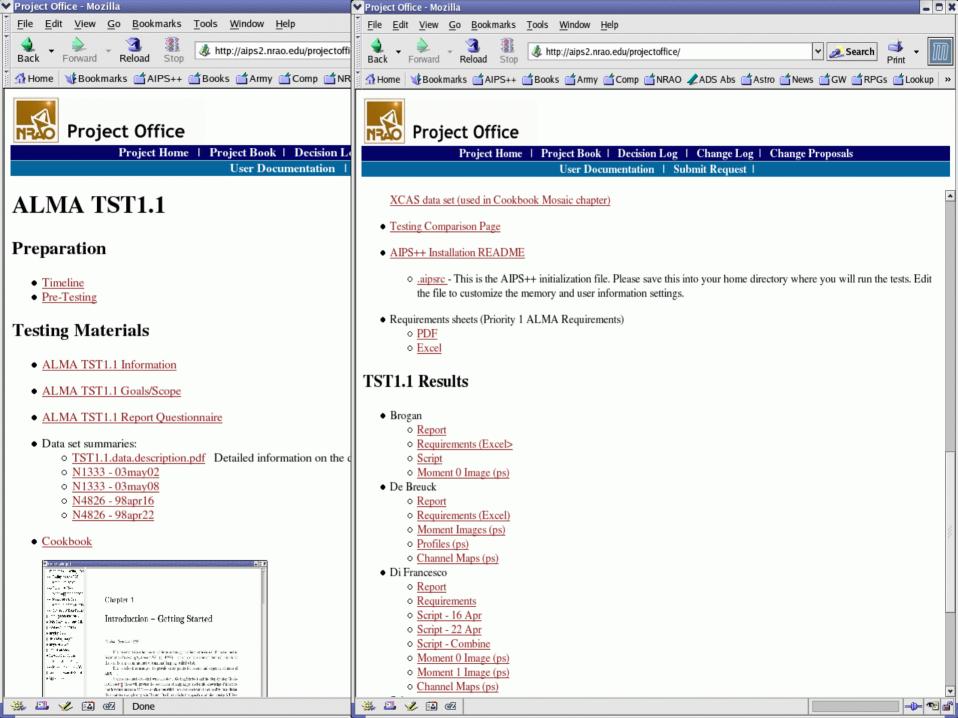
December 14-13, 2004

External Testing



• ALMA TST1, ALMA TST1.1

- Goals/Scope
- Data sets:
 - TST1: 2 VLA, 2 PdBI reduced and imaged by five astronomers with experience in interferometry.
 - TST2: 1 VLA, 1 BIMA reduced and imaged by six astronomers with experience in interferometry
- 106 ALMA/EVLA Priority 1 requirements were exercised
- Information provided to testers: Goals, scope, AIPS++ installation info, detailed cookbook and dataset summaries, blank questionnaire and Offline requirements spread sheet for testers to fill out.
- Expected results provided in Testing comparison page, final results also posted.
- **Results** *Tests Passed* 2004-03-01, 2004-12-15
- All testers successfully reduced and imaged their data
- 84% of requirements graded A,A/E (improved by 12% from audit)



Testing


Test	Date	Status	Science	Data
ALMA TST1	Mar 04	Passed	Single Field	$G192 - VLA - NH_3$
				NGC 7538 – VLA – NH ₃
				U Cam – PdBI- mm line
				L02D – PdBI – mm line
ALMA TST1.1	Nov 04	Passed	Single Field	Previous datasets +
			Mosaic	NGC 1333 – VLA – SiO
				NGC 4826 – BIMA – CO
ALMA TST2	Mar 05	Scheduled	Single Field	Previous datasets +
			Mosaic	NGC 4826 – BIMA - CO
			SD+Interferometry	Orion – VLA – continuum
EVLA TST1	Mar 05	Scheduled	Wide Field Imaging	TBD – EF VLA datasets

McMullin

EVIA & ALMA

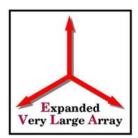
- NRAO commitments to ALMA
 - Offline & Pipeline Software IPT sub-systems
 - EVLA can leverage off co-development
- Requirements overlap >65% in common
 - EVLA requirements are more detailed (=more!)
 - differences in pipeline, solar, VLBI, imaging & calibration (wide-band, wide-field), RFI, etc.

- data handling (unless EVLA close to ALMA model)

Resources

- Science Software Group
 - System
 - 2.5 FTEs (Wes, Darrell, David D.)
 - Synthesis Applications
 - 2.75 FTEs (Kumar, George, David K., Joe) + external FTEs
 - ALMA Directed Development
 - Pipeline: 1.5 FTEs (Lindsey, Dongshan)
 - EVLA Directed Development
 - 1.25 FTEs (Sanjay, Urvashi)

Development Areas



- Common areas
 - Atmospheric correction
 - Automated flagging
 - Mosaic, SD/Synth combination
 - Additional imaging algorithms
 - Interface
 - Science Data Model
 - Pipeline
- EVLA-specific algorithm development
 - Direction & frequency dependent imaging & calibration (full polarization)
 - Wide-field imaging
 - Antenna-based pointing offsets
 - Wide-band imaging
 - RFI rejection

EVLA-focus development: Example 2-year Plan

https://wiki.nrao.edu/bin/view/ISD/ Planning-2004

- Wide-field processing
 - 1. Problem definition done
 - 2. Implement w-projection R1 Q2'05, R2 Q4'05
- Direction dependent calibration
 - 1. Problem definition pointing corrections done
 - 2. Implement pointing corrections R1 Q4'05
- Wide-band processing
 - 1. Problem definition narrow-field Q2'05, wide Q2'06
 - 2. Implement MFS narrow-field Q2'06

EVLA AC Issues

- ALMA focus
 - Really a core synthesis focus; application development focus on common needs
 - Establish a common process; reliable delivery of working applications.
 - Enumerating the 'deltas'; scheduling (development, testing, verification, resources) in progress.
- Robustness, Usability, VLA Users
 - Development Process application, documentation, test script, data
 - Testing Process internal testing, internal scientist verification, external scientist testing and verification
 - Enhanced Testing Cumulative regression battery
 - Deprecate GUI interface/focus on CLI
 - Defer user support until new framework is in place

2004 Issues

- Scheduling research (Sanjay's talk)
- User profile
- Parallelization how much & when?
- User support how much, when, & who?
- Buy in observatory & community AIPS++->CASA

Framework

- Near-term development based on minimal system using ACS with minor technology developments
 - Task definition (based on AIPS tasks/usage for granularity)
 - Refactor libraries (CASA)
 - Transfer of glish methods to C++
 - Develop standard IDL mappings to AIPS++ types
 - Task/parameter system implementation
 - Host-level execution of tasks
 - Prototype tasks by 2005.5
 - Testing with task system 2006.5
 - Available for 2007.5
- Coordinate with parallel R&D efforts to address longer term concerns such as scalability.