

EVLA Post-processing

Algorithm Development

Sanjay Bhatnagar

AIPS++/EVLA

Requirements

• Full beam imaging

– Wide field imaging problem at L-band

- Full bandwidth continuum imaging
 Multi-frequency Synthesis at 2:1 BWR
- Image plane corrections
 - Pointing offsets, Poln. PB corrections, nonisoplanatic phase correction
- Other stuff


Wide field imaging

- Traditional approach (Faceted imaging)
 - Approximate the sky as smaller facets
 - Use 2D approximation within the facets
 - Stich the facets to make the final image
- Problems
 - Multiple gridding/de-gridding per major cycle
 - Edge effects
 - Extended emission across facets


W-projection

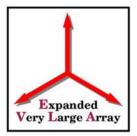
- Use Fresnel term during gridding (EVLA Memo #67)
 - Project w-axis onto w=0 plane during gridding.
 - Use average PSF during minor cycle.
- Advantages
 - Major cycle speeds up by $\sim 10x$.
 - No edge effects. User always sees 2D projection.
 - Component based imaging (MS-Clean, Asp-Clean)
 possible.

Wide band imaging

- Frequency sensitive deconvolution
 - Sky: Spectral Index effects
 - Primary Beam and UV-coverage scales with frequency
 - Time varing PB (asymmetries, beam squint)
- Possible solutions
 - Image plane MFS / Model fitting
 - Image plane effects in gridding (inspired by wprojection)

Plan

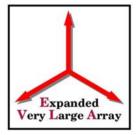
- W-projection implemented in AIPS++
 Measured speed-up for VLA-A, L-Band: x10
- Implement component modeling in AIPS++
 - The code in C++ works but as a Glish client
 - Extend it for frequency dependent components
- Extend w-projection (work in progress) (EVLA Memo #84)
 - PB application during gridding done (pointing selfcal)
 - Extend it for frequency dependent PB.


Imaging computing load

- Wide field imaging
 - 8h, VLA-A, LBand data processed in ~10h (20GB).
 - Corresponds to about 1% of the EVLA data.
- Major cycle: data prediction
 - For normal Clean, this is the most expensive step.
 - With w-projection, this is limited by the I/O speeds.
- Minor cycle: component search
 - Compute limited for component based imaging.

Parallel computing

- Parallel I/O
 - Parallelizing gridding by data partitioning
 - Use parallel file system to access data for other applications (viewer, etc.)
- Need to develop portable imaging and calibration software for clusters.
- Use AIPS++ code-base.
- Need to invest in a modest cluster now.


Plan

- Start work on parallelization in parallel with current algorithm development
- Collaborate with others (Xiao Qin @NMT)
 - Evaluate various schemes for parallelization
 - Explore Parallel File Systems and their interface to the AIPS++ Table system
 - Implement imaging/calibration algorithms on cluster machine

Other Stuff

- Other things needed, but not part of the focus for the coming year
 - RFI Removal (EVLA Memo #61, 86)
 - Data Visualization

References

- Removing RFI through astronomical image processing, EVLA Memo #61, Perley & Cornwell (2003)
- RFI Excision in Synthesis Imaging without reference signal, EVLA Memo #86, Cornwell, Perley, Kolap, Bhatnagar (2004)
- W-projection: A new algorithm for non-coplanar baselines, EVLA Memo #67, Cornwell, Kolap, Bhatnagar (2004)
- Solving for antenna based pointing errors, EVLA Memo #84, Bhatnagar, Cornwell, Kolap (2004)