Computer Simulations of Nonthermal Particle and Photon Spectra from Merging Clusters of Galaxies

Robert C. Berrington (University of Wyoming) Charles D. Dermer (Naval Research Laboratory)

The Merging Cluster Scenario

- Rich clusters form by accreting poor clusters
 - Shocks form in ICM at boundary
 - if v_s exceeds sound speed of ICM
 - Thermal particles swept up in shock
 - Accelerated via first-order Fermi
 - Sizes: ~1 Mpc are possible
 - May also reaccelerate particles
 - Head-tail radio galaxies nearby

Cluster Merger

Shock Dynamics

• Shocked fluid velocities $\frac{\mu_1 n_1(t)}{\mu_2 n_2(t)} = \frac{1 + 3M_1^{-2}(t)}{1 + 3M_2^{-2}(t)} \left(\frac{v_{\text{infall}}(t) - v(t)}{v(t)}\right)^2$

Shock Dynamics

• Shock speed • Forward and reverse mach numbers: $M_{1}(t) = \frac{2v}{3c_{1}} \left(1 + \sqrt{1 + \frac{9c_{1}^{2}}{4v^{2}}} \right), \text{ and } M_{2}(t) = \frac{2(v_{\text{infall}}(t) - v)}{3c_{2}} \left(1 + \sqrt{1 + \frac{9c_{2}^{2}}{4(v_{\text{infall}}(t) - v)^{2}}} \right)$ • Compression ratio: $r_{1,2}(t) = \frac{\Gamma + 1}{\Gamma - 1 + 2M_{1,2}^{-2}(t)}$

Γ = 5/3 is the ratio of specific heats for an ideal gas

Shock Dynamics

×

Forward Shock

Reverse Shock

Temporal Particle Evolution

Fokker-Plank equation

Particle Injection

Power law distribution with exponential cutoff

$$Q_{e,p}(E,t) = Q_{e,p}^{0} \left[\frac{(pc)^{-\alpha}}{\beta} \right] \exp \left[-\frac{E}{E_{\max}(t)} \right]$$

Normalization

 $\int_{E_{\min}}^{E_{\max}} E_{e,p} Q_{e,p}(E,t) dE = \eta_{e,p} \left(\frac{1}{2} \langle n_{\text{ICM}} \rangle \eta_{\text{He}}^{e} m_{p} v_{s}^{2} \right) (A_{s} v_{s})$

- Where $\eta_{e,p}$ is an efficiency factor, and is set to 5%.
- Typical values are E_{tot}≈10⁶³⁻⁶⁴ ergs

Particle Injection

Maximum particle energy

Acceleration time constraint

$$\dot{E}_{\max,1} = \frac{100B_{\rm ICM}v_s^2}{fr_J} \,\text{MeV s}^{-1} \Longrightarrow E_{\max,1} = \int_0^t dt \,\dot{E}_{\max,1}$$

- Energy loss constraint
 - for electrons $E_{\max,2,e} = 2.8 \times 10^{4} \frac{v_{s}[\text{km}]}{\sqrt{fr_{J}}} \sqrt{B_{\text{ICM}}[\mu\text{G}]/(1+z)^{4} + 10^{-1}B_{\text{ICM}}^{2}[\mu\text{G}]} \text{ MeV}$ • for protons $E_{\max,2,p} = 2 \times 10^{12} \frac{v_{s}[\text{km}]}{\sqrt{0.1 fr_{J} B_{\text{ICM}}[\mu\text{G}]}} \text{ MeV}$
- Size scale limitation $E_{\text{max},3} = \frac{10^{14}}{f} \left(\frac{B}{\mu\text{G}}\right) \left(\frac{\lambda_{\text{max}}}{\text{Mpc}}\right) \text{MeV}$

Nonthermal Photon Spectra

Nonthermal Particle Luminosity

×

LOFAR

Estimated Sensitivities (1 hour exposure)
~1.6 mJy at 15 MHz with resolution of ~12"
~40 µJy at 120 MHz with resolution of ~2.4"
Detection limit
~2000 Mpc at 15 MHz
~700 Mpc at 120 MHz

Diffuse Extragalactic γ-ray Background

- Our simulations show spectral indicies of ~2.2-2.4 for average density profile
 DEGB power-law slope of 2.10±0.03
 Central cusps in dark matter profiles will lower spectral indicies
 Pion bump not observed
 Probably pot a dominant contributor.
- Probably not a dominant contributor

Minimum Spectral Index

Modeling the Coma Cluster

Parameters for Coma Cluster

• Assuming $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $(\Omega_0, \Omega_R, \Omega_\Lambda) = (0.3, 0.0, 0.7)$ • $n_0 = 3.12 \times 10^{-3} \text{ cm}^{-3}$ • $\beta = 0.705$ (Mohr, Mathiesen, & Evrard 1999) • $r_c = 257 \text{ kpc}$ $\bullet \eta_{e,p} = 1\%$ • $t_{age} = 9.7 \times 10^8$ yrs, $t_{coll} \approx 1.0 \times 10^9$ yrs • $B = 0.22 \, \mu G$ • $M_1 = 0.8 \times 10^{15} M_{\odot}$ and $M_2 = 0.1 \times 10^{15} M_{\odot}$

Coma Cluster

Conclusions

- Radio halo and hard X-ray emission well fit by cluster merger model
- Difficult to account for the Diffuse Extragalacitc γ-ray Background
- Likely detection of the Coma Cluster by GLAST and marginal detection by VERITAS.