### Mergers and Non-Thermal Processes in Clusters of Galaxies



Craig Sarazin University of Virginia



#### A133 Chandra and VLA



#### Collaborators

Liz Blanton, Tracy Clarke, Scott Randall, Thomas Reiprich (UVa)

Josh Kempner, Maxim Markevitch, Alexey Vikhlinin (CfA)

Paul Ricker (U. III.)

Yutaka Fujita (NAO, Japan) Motokazu Takizawa (Yamagata U., Japan)

## **Cluster Mergers**

- Clusters form hierarchically
- Major cluster mergers are most energetic events in Universe since Big Bang
  - Major cluster mergers, two subclusters, ~10^{15}  $M_{\odot}$  collide at ~ 2000 km/s
  - E (merger) ~ 2 x 10<sup>64</sup> ergs
  - E (shocks in gas) ~ 3 x 10<sup>63</sup> ergs

#### Abell 85 Merger



#### Chandra X-ray Image Kempner et al.

# **Merger Shocks**

- Typical shock velocity 2000 km/s
- E (shock) ~ 3 x 10<sup>63</sup> ergs
- Main heating mechanism of intracluster gas



**Ricker & Sarazin** 

## **Thermal Effects of Mergers**

- Heat and compress ICM
- Increase entropy of gas
- Increase X-ray luminosity, temperature, SZ effect
- Mix gas
- Disrupt cool cores
- Provide diagnostics of merger kinematics

# Chandra "Cold Fronts" in Mergers

Merger shocks?

No: Dense gas is cooler, lower entropy, same pressure as lower density gas



Abell 2142 Markevitch et al.

#### Abell 3667



Contact discontinuity, cool cluster cores plowing through hot shocked gas Vikhlinin et al.

#### **Cold Front with Merger Bow Shock**



Markevitch et al.

#### 1E0657-56

## **Merger Kinematic Diagnostics**

 $\mathcal{M} \equiv$  Mach number of Cold Front motion

Stagnation Point Condition: (Vikhlinin, Markevitch, & Murray 2001)

$$\frac{P_{\rm st}}{P_1} = \begin{cases} \left(1 + \frac{\gamma - 1}{2} \mathcal{M}^2\right)^{\frac{\gamma}{\gamma - 1}}, & \mathcal{M} \le 1, \\ \mathcal{M}^2 \left(\frac{\gamma + 1}{2}\right)^{\frac{\gamma + 1}{\gamma - 1}} \left(\gamma - \frac{\gamma - 1}{2\mathcal{M}^2}\right)^{-\frac{1}{\gamma - 1}}, & \mathcal{M} > 1. \end{cases}$$
(1)

 $\gamma = 5/3.$ 

Rankine–Hugoniot Shock Jump Condition: (Markevitch, Sarazin, & Vikhlinin 1999)

$$\frac{1}{C} = \frac{2}{\gamma + 1} \frac{1}{\mathcal{M}^2} + \frac{\gamma - 1}{\gamma + 1},$$
(2)

 $C \equiv \rho_2/\rho_1 \equiv$  shock compression

Mach Angle: (Sarazin 2002)

$$\theta_M \equiv \csc^{-1}(\mathcal{M}) \tag{3}$$

Shock Stand-Off Distance: (Vikhlinin et al. 2001; Sarazin 2002)

#### Find $\mathcal{M} \approx 1.5$ , shock velocity $\approx 2000$ km/s

## Merger Boosts to L<sub>X</sub> & T<sub>X</sub>

Mergers temporarily boost

- X-ray luminosity (factor of ≤ 10)
- Temperature (factor of ≤ 3)
- Are the most luminous, hottest clusters mainly mergers?



**Ricker & Sarazin** 

#### Merger Boosts (cont.)



The most luminous, hottest clusters should mainly be mergers. Affects values of  $\Omega_M$  and  $\sigma_8$  from luminous clusters. Randall et al.

#### Merger Boosts (cont.)

Lensing studies of masses of most luminous, hottest clusters confirm merger boosts L<sub>X</sub> & T<sub>x</sub> Smith et al.

Mergers probably boost S-Z effect

Mergers also appear to boost probability of strong lensing Meneghetti et al., Randall et al.



## Nonthermal Effects of Mergers: Particle Acceleration

Supernova remnants: shocks at ≥ 1000 km/s → ≥ few % of shock energy → cosmic ray electrons

 $E_{CR,e} \gtrsim 10^{62} \text{ ergs}$   $E_{CR,ion} \gtrsim E_{CR,e}$ Clusters





## Energy Losses: Cosmic Ray e's

- Coulomb losses to thermal plasma at low energies (γ ≤ 300, E ≤ 150 MeV)
- IC, Synchrotron at high energies



#### **Clusters: Cosmic Ray Store Houses?**

- Strong gravity, ICM, B hold CRs
- Large  $\rightarrow$  long diffusion times  $\gg 10^{10}$  yr
- Low gas, radiation densities → losses low



## Primary vs. Secondary Electrons

- Primary 
   → electrons directly accelerated
- Secondary → Large population of protons Relativistic protons collide with thermal protons, make pions  $p + p \rightarrow p + p + n \pi$ Electrons produced by pion decays  $\pi^{\pm} \rightarrow \mu^{\pm} \rightarrow e^{\pm}$

### Shock vs. Turbulent Acceleration

- Radio relics → shock (re)acceleration (?)
- Radio halos → turbulent (re)acceleration following shock passage (?)

## **Typical CR Electron Distribution**

- Lots of low energy e's (γ ~ 300, E ~ 150 MeV) from previous acceleration
- Tail of high E electrons from current merger acceleration (and small number of secondary electrons)



## **Typical IC Emission Spectrum**

- EUV/Soft X-rays
- Hard X-ray Tail (Radio Synchrotron from similar electrons) – Only in clusters with current merger



#### Cluster Radio Halos and Relics Radio Relics (shock acceleration?) (turbulent acceleration?)





#### Abell 3667 Röttgering et al.

Coma Govoni et al.

### Merger Shocks and Diffuse Radio Emission



Chandra → Radio Emission at and behind merger shocks (Markevitch & Vikhlinin)

## Radio Halo Power vs. L<sub>X</sub> & T<sub>X</sub>



- Mergers shocks → turbulent acceleration of electrons?
- Merger boosts to L<sub>X</sub> & T<sub>X</sub>
   Strong P<sub>radio</sub> vs. L<sub>X</sub> & T<sub>X</sub> correlation? (Randall & Sarazin)

## EUV/Soft X-ray Emission from Clusters

Possible detections of EUV/soft X-ray excess emission in many nearby clusters with EUVE, ROSAT, XMM/Newton

- Detections controversial
- Source of emission uncertain:

thermal or nonthermal?



A1795 EUVE Mittaz et al.

#### Nonthermal Hard X-ray Emission

Possible detections of hard X-ray excesses from clusters with BeppoSAX & RXTE

Coma, A2319, A2256, ...

B ≈ 0.2 µG if IC Surprising low?

- Detections weak ~ 4  $\sigma$
- Must be in excess of BG and thermal emission



Coma HXR BeppoSAX Fusco-Femiano et al.

#### Caution: IC Detections are Weak and Controversial

Longer (222 ksec) exposure on Coma with BeppoSAX (2000)

Rossetti & Molendi 2004:

Hard X-ray excess not detected

Fusco-Femiano et al. 2004:

Hard X-ray excess confirmed



### Nonthermal Hard X-ray Emission from Groups?

Difficult to see IC Hard X-ray excess against luminous cluster hard X-ray thermal emission

Look at groups with radio halos?

(Hudson & Henriksen 2003)

Cooler thermal gas  $\rightarrow$  easier to see?

#### **Gamma-ray Emission**

Predict strong  $\gamma$ -ray emission at ~100 MeV Detect both electron (bremss) and ions ( $\pi^{\circ}$  decay)

Detectable with GLAST & AGILE in ~40 clusters



Sarazin; Gabici & Blasi

#### Conclusions

- Cluster mergers are the most energetic events in the Universe since the Big Bang, E ~ 10<sup>64</sup> ergs
- Cluster mergers boost L<sub>X</sub> & T<sub>X</sub> → the most luminous, hottest clusters may mainly be mergers
- ☆ Chandra has detected beautiful cold fronts and shocks in mergers → provide diagnostics of kinematics and cluster physics
- ♦ Merger shocks and turbulence → particle acceleration → nonthermal radio, EUV/soft X-ray, & hard X-rays.
- GLAST should detect ~40 clusters in ~100 MeV gamma-rays