Synthetic X-Ray and Radio Observations of Simulated Jets: Insights and Opportunities

X-ray and Radio Connections February 5, 2004 I. L. Tregillis (LANL / U of MN) T. W. Jones (U of MN) Dongsu Ryu (Chungnam Natl. Univ.)

Overview

- Introduction: A new approach
- Background: The simulations
- Opportunities: Synthetic Observations
 - What, Why, How?
- Insights
 - Dynamics
 - Field properties
 - Energy partitioning
- Conclusion: Opportunities

Introduction: A New Approach

- Self-consistent acceleration and transport of cosmic ray (CR) electrons within 3D MHD jet simulations
- Synthetic synchrotron radio and inverse-Compton Xray observations (IC/3K, SSC)
- Standard observational analyses
 - Tregillis et al. ApJ, v601 n2 February 1 2004
- The fun part:
 - Do we recover accurate source properties?

Our Approach to CR Transport (Jones et al. ApJ, 512, 105)

- Physical scales for acceleration << dynamical scales
- Broad electron distribution f(p) enables "finite volume" approach in momentum space:
- Use test-particle model for fast Fermi acceleration at shocks
- Solve kinetic equation for downstream transport

$$n_{i} = 4\pi \frac{f_{i-1/2} p_{i-1/2}^{3}}{q_{i}^{-3}} \left[1 - \left(\frac{p_{i-1/2}}{p_{i+1/2}} \right)^{q_{i}^{-3}} \right]$$

$$3r \left(q-3 \right)$$

$$q = \frac{3r}{r-1} \quad \left(\alpha = \frac{q-3}{2}\right)$$

$$\frac{dn_{i}}{dt} = 4\pi \left(\frac{1}{3}\nabla \cdot u - \frac{qD}{p^{2}} + \frac{p}{\tau_{s}p_{0}}\right)p^{3}f\Big|_{p_{i-1/2}}^{p_{i+1/2}}$$

One Jet... (Tregillis et al. ApJ, 557, 475)

- Light, supersonic (nonrelativistic) 3D MHD jet
- $M_j=8$, $\eta=\rho_j/\rho_a=0.01$; pressure matched in uniform background
- Helical magnetic field; $\beta_0 = 100$ on axis
- Symmetry broken with 5° precession
- 15 zones across jet core for accurate shock identification

...Three Scenarios (Tregillis et al. ApJ, 557, 475)

Model 1: "Control"

- No injection of fresh particles at shocks
- Negligible radiative aging
- Model 2: "Injection"
 - Minimal CR population carried down jet
 - Fraction (ϵ =10⁻⁴) of thermal electron flux "injected" at shocks
- Model 3: "Cooling"
 - Radiative lifetime for 5 GeV electrons ~ simulation duration
 - Spectra experience considerable aging

Particles...

...and Fields

Synthetic Observations

 $+ \rightarrow j \rightarrow$

Fields

Synthetically-observable quantities include:

Radio synchrotron surface brightness and spectral indexIC/3K and SSC X-ray surface brightnessRadio polarimetry (Stokes Q, U); Faraday rotation & RM

Example: Radio Surface Brightness, 1.4 GHz

Combined Observations (finally): Dynamical Insights (Tregillis et al. ApJ February 1, 2004)

 $I_{IC/3K} \propto I_S^m$; m = 1/3 – 1/2

 $I_{s} \propto n_{e} DB^{1+\alpha} \qquad \alpha \sim 0.5 - 1.0$ $I_{IC/3K} \propto n_{e} D \qquad B \propto n_{e}^{b}$

Compression (tangled) : B $\propto \rho^{2/3} \Rightarrow \underline{m} \sim 0.5 - 0.43$ Perpendicular shocks: B $\propto \rho \Rightarrow \underline{m} \sim 0.4 - 0.33$

Dynamical Insights, continued (Tregillis et al. ApJ February 1, 2004)

 $I_{SSC} \propto I_{S}^{m}$; m = 1/3 - 1/2

Locally dominated radiation field: $\Phi \propto I_S \implies \underline{m \sim 1.47} \ (\alpha \sim 0.65)$

Combined Observations: Magnetic Field Strengths

$$B_{me} = 5.69 \times 10^{-5} \left[\left(\frac{1+k}{\eta} \right) \frac{(1+z)^{3+\alpha}}{\theta_x \theta_y l \sin^{3/2} \theta} \frac{F(v_0)}{v_0^{-\alpha}} \left(\frac{v_2^{1/2-\alpha} - v_1^{1/2-\alpha}}{1/2 - \alpha} \right) \right]^{2/7}$$

Radio & X-ray:

$$\boldsymbol{B}_{ic}^{1+\alpha} = \left(\frac{j_{\alpha 0}^{BC}}{j_{a0}}\right) (1+z)^{3+\alpha} (1.06 \times 10^{-11}) (2.09 \times 10^{4})^{\alpha-1} \left(\frac{\nu_{r}}{\nu_{x}}\right)^{\alpha} \frac{I_{s}(\nu_{r})}{I_{ic}(\nu_{x})}$$

The Gritty Reality...

...and Derived Values

Combined Observations: Energy Partitioning

$$d \equiv \frac{U_{B}}{U_{E}} = d_{\min} \left(\frac{B}{B_{me}}\right)^{7/2}; \quad d_{\min} = \frac{3}{4}(1+k)$$

•B_{me} is inferred from the radio emission
•B is the true field value in the ideal case
•So, if B_{ic} is a useful estimator of B, why not...

Replace B with B_{ic} and get a direct estimate of d?

Best Case Scenario: High Degree of Uniformity

We know *d* exactly at the base of the jet...

d	Control	Injection	Cooling
Initial Conditions	1.6 x 10 ⁻¹	1.6 x 10 ³	1.6 x 10 ⁻¹
Derived from B _{ic} and B _{me}	1.7 x 10 ⁻¹	1.2 x 10 ³	9.2 x 10 ⁻²

More Gritty Reality

Conclusions & Future Work

Combined synthetic X-ray and radio observations of simulated jets reveal:

- Dominant dynamical and transport effects
 Good estimates for local field strengths
- •Direct, independent estimates for the energy partitioning

All of this information is crucial groundwork for understanding the long-term evolution and dissipation of extragalactic jets on cosmological scales.