The Physics of Jet Dissipation

D. S. De Young

National Optical Astronomy Observatory

X-Ray and Radio Connections – Santa Fe

5 February 2004

Overview

- Motivation and Basic Principles
- Global Dissipative Processes
 - Underlying Instabilities
 - Non-Linear Evolution and End State
 - Role of Magnetic Fields
 - Applications
- Local Dissipative Processes
- Lobe Death
- Implications

Jet Dissipation

• Dissipation/Destruction:

- Self Inflicted
- Due to Interaction with Environment
- Types:
 - Global
 - Local
 - Induced
 - Inevitable

Jet Dissipation – Related To:

- Radio Source Morphology/Type
- Extragalactic Emission Lines
- Metallicity of the Early IGM and ICM
- "Alignment Effect" in High-z Objects
- X-Ray Knots and Hot Spots
- Evolution of YSO Jets

Jet Interaction with Environment

- Most Important Form of Dissipation
- Mediates Energy, Mass, and Momentum Transfer Between Jets and Their Environment
- May be a Way to Determine:
 - Jet Content
 - Jet Bulk Flow Speeds
 - Jet B Fields
 - And Thus Constrain AGN Models

Dissipation Via Surface Instabilities

• Universal

- Present at Some Level in All Jets in All Environments
- Global
 - Involve Most of Jet Surface for Long Times
- Inevitable (?)
 - Very Special Circumstances Required to Prevent Occurrence

Dissipation Via Surface Instabilities

- Non-Linear Phase Creates Turbulent Mixing Layer
 - Entrains Ambient Medium
 - Transfers Momentum and Energy to Ambient Medium
 - Mixing Layer Can Penetrate Entire Jet Volume
 - Can Decelerate Jet to Subsonic Drift Motion

Hydrodynamic Dissipation

Kelvin-Helmholtz Instability
 Interface Between Fluids in Relative Motion

K-H Instability

- Linear Regime:
 - Perturbations Unstable at All Wavelengths in the Absence of Restoring Forces $\Delta U^2 \ge [2(\rho + \rho_2)/\rho_1\rho_2] \{T(\rho_1 - \rho_2)\}^{1/2}$
 - Shortest Wavelengths Most Unstable $\Gamma = k \Delta U(q,q_{-})^{1/2} / (q_{-} + q_{-})$

 $\Gamma = k\Delta U(\rho_1 \rho_2)^{1/2} / (\rho_1 + \rho_2)$

K-H Instability

- Quasi-Linear Regime:
 - Waves "Break"
 - Vorticity Created
 - "Cat's Eye" Structures Form

K-H Instability

Fully Non-Linear Regime:
 Development of Turbulent Mixing Layer

- Entrainment Very Effective
 - "Ingest Digest" Process

K-H Instability and Mixing Layers in Supersonic Flows

- Growth of K-H Instability and Mixing Layers is Inhibited By:
 - Compressibility
 - Spread of Initial Velocity Shear in Transverse Direction
 - Supersonic Relative Speeds $Tan \phi \propto M^{-1}$

• Thickness Grows with Distance/Time

Tan $\phi = C (\rho_L / \rho_H)^{\alpha} (v_{REL})^{-\beta}$

• Mixing Layer Can Permeate Entire Jet

Relativistic Jets

- Data Very Sparse
- Use Numerical simulations
 - (Marti et al., Aloy et al., 1999-2003)
- 3d Simulations Show:
 - No "Backflow"
 - Development of Shear/Mixing Layers
 - Deceleration

- Remove Isotropy
- Add Viscosity
- Stabilize In Principle
 - $\Gamma = 0.5 | \mathbf{k} \cdot \mathbf{U}_{\mathrm{R}} | [1 (2 v_{\mathrm{A}} \mathbf{k} \cdot \mathbf{B})^2 / (\mathbf{k} \cdot \mathbf{U}_{\mathrm{R}})^2]^{1/2}$
 - or, stable if

 $M_A = U_R / v_A \le 2$

– for

- What are "Reasonable" Field Strengths?
- What Are the Field Strengths in Jets?
- What is the Origin of Jet Magnetic Fields?
 - Global Value of Beta >> 1.0
- Empirical Data Scarce
 - ICM Values Imply Beta ~ 100 1000

- Numerical Simulations Required
 Jones et al. 1996 2000
- Two Dimensional MHD
 - Still Mixes for Beta > 10
 - Enhanced Local Fields
 - "Cat's Eyes" Destroyed
 - Turbulence Suppressed by Geometry, Boundaries

• Three Dimensional MHD **Enhanced Local Fields** For High Beta > 100 • Evolves to Turbulence • Turbulent B Amplification • Enhanced Dissipation due to Magnetic Reconnection Instability Remains "Essentially Hydrodynamic"

Jet Dissipation

- Penetration of Turbulent Mixing Layer Throughout Jet Volume
 - Since $\operatorname{Tan} \phi \approx C \left(\rho_{\rm J} / \rho_{\rm Amb} \right)^{-\alpha} \mathrm{M}^{-1}$
 - Then Mixing Layer Thickness = Jet Radius at

 $\Delta \mathbf{R} = \mathbf{L}_{\mathrm{MIN}} \operatorname{Tan} \phi = \mathbf{R}_{\mathrm{Jet}}$

– or

 $L_{\rm MIN} \approx C' R_{\rm Jet} M \left(\rho_{\rm J}/\rho_{\rm Amb}\right)^{\alpha}$

• At This Point Jet Is Fully Mixed, Turbulent

Jet Dissipation

- Saturated, Turbulent Jet Has Now
 - Entrained Mass from Ambient Medium

• (Bicknell 1984, De Young 1982, 1986)

- Accelerated and Heated this Mass
- Significantly Decelerated, Possibly to Subsonic Plume
- Locally Amplified any Ambient or Entrained Magnetic Fields

Saturated Mixed Jets

Could Explain FRII – FRI Dichotomy

- (De Young 1993, Bicknell 1995, Liang 1996)

Radio Galaxy 3C296 Radio/optical superposition Copyright (c) NRAO/AUI 1999

And The FRII – FRI Dichotomy

Saturated Mixed Jets

- Could Explain
 - Transport of Astrated Material to Extragalactic
 Scales via Mass Entrainment
 - Emission Lines in ICM and Outside Galaxies
 - Cooling and Jet Induced Star Formation
 - Extragalactic Blue Continuum
 - Dust Formation; Alignment Effect at Large z
 - Injection of Metals into ICM
 - Contamination of IGM at Very Early Epochs

Local Dissipative Processes: Internal Shocks

- Require Special Circumstances:
 - Changing Jet Input
 - Local and Sudden Change in External Medium
 - Ambient Pressure Changes
 - Ambient Density Changes
 - Jet Expansion
 - Jet Bending
 - Jet Disruption

Internal Shocks: Effects

- Partial Thermalization of Flow
- Particle Acceleration (J.Kirk)
- Magnetic Field Compression $B_1 \approx B_0(\gamma + 1)/(\gamma - 1)$
- Radiation
 - Thermal
 - $T_1 \approx T_0 (2\gamma M_0^2) / (\gamma + 1)^2$
 - Non-Thermal $P_{Synch} \propto B^2 E^2$

Internal Shocks: Dissipation

Internal Shocks Along Jet:

Mostly Oblique

• Not Disruptive

- Mostly Convert Energy $\rho v^2 \rightarrow \Delta T, \Delta B^2, \Delta E$

Extragalactic Internal Shocks

Siemiginowska et al, 2002

Marshall et al. 2001

Extragalactic Internal Shocks

Dissipative and Radiative Losses "Small"
 Jet Not Disrupted, Hence:

- Shocks Are Weak and/or Oblique
- X-Ray and Radio Luminosities from Knots (Modulo Beaming) << Kinetic Energy Flux
- But Emission May Provide Evidence for Jet Flow Speeds
 - SSC vs. IC on CMB

Termination Shocks

(Beware Axisymmetric Calculations)
Actual:

M. Norman

Termination Shocks

 May Be The Major Source of Energy Dissipation for Non-Infiltrated Flows

 May Be The Major Source of Turbulent Energy in Radio Lobes

Conclusions

- Primary Jet Dissipation Mechanisms
 - Surface Mixing Layers
 - Termination Shocks
 - Turbulence
- Dissipation Processes Can Lead To:
 - Enrichment of IGM/ICM
 - Amplification of B Fields
 - Particle Acceleration?
 - Distant Emission Lines, Star Formation

Conclusions

- The Magnetic Field Problem
 - Origin
 - Strength
 - Geometry
 - Evolution and Amplification
- A Problem for Both Jets and Lobes

Conclusions

• A Remaining Mystery

