Radio Data Archives how to find, retrieve, and image radio data: a lay-person's primer

Michael P Rupen (NRAO)

By the end of this talk, you should know:

- The standard radio imaging surveys that provide FITS images
- How to find your source in the VLA/VLBA archives
- How to choose which data to download from those archives
- That there is an easy method to convert those data into preliminary images

Limitations of this talk

- FITS, not JPEG \rightarrow not image galleries
- Images \rightarrow not catalogs or flux densities
- Emphasis on interferometers (vs. single dishes)
 High-quality, high-resolution imaging
 - Much better archives (!)
- Primarily NRAO instruments
 - Much recent work (kudos to John Benson [©])
 - Again, better archives (!!!)
 - Looking to ALMA/EVLA: the shape of things to come!
- Concentrate on existing, currently find-able data
- Aimed at intrepid explorers, not super-pundits

Sources of radio data: Surveys

 Will soon cover entire sky at <= 1.5 GHz
 Resolutions typically 45 arcsec
 RMS noise of 0.5 mJy (NVSS/1.4 GHz, >-40) to 2 mJy (SUMSS/0.84 GHz, <-30)
 Postage stamp servers → JPG/FITS images

Sources of radio data: Surveys

- Several other sky surveys: WENSS, 4MASS/VLSS, FIRST, ...
- Many nifty targeted, special-interest surveys

 Canadian Galactic Plane Survey (CGPS)
 - WHISP, BIMA-SONG

 VLBI: MOJAVE, Radio Reference Frame Image Database, DRAGN, VLBA Calibrator Survey, ...
 SIRTF/Spitzer First Look Survey

Survey	Area	Freq.	Res'n	Rms	sample
NVSS	Dec>-40	1.4 GHz	VLA/D	0.45 mJy	
			45asec		
FIRST	N/S	1.4 GHz	VLA/B	0.15 mJy	
	Gal.caps		5asec		2014 37
VLSS/	Dec>-30	74 MHz	VLA/B	100 mJy	
4MASS			80asec		
WENSS	Dec> 30	326 MHz	WSRT	3.6 mJy	
			54asec		
SUMSS	Dec<-30	843 MHz	MOST	1.3-2 mJy	
			45asec		
CGPS	b <5	408,			
	I = 74.147	1420			

Sources of radio data: Archives

- VLA: arcsec-arcmin resolution over few to 10s of arcminutes
- VLBA: milliarcsecond resolution over arcseconds
- GBT: arcminute resolution over degrees
 - One-year proprietary period
 - Returns raw data via ftp
- Australia Telescope Compact Array (ATCA): arcsecond resolution over arcminutes
 - 18-month proprietary period
 - E-mail to get raw data
- MERLIN: 10s of milliarcsecond resolution over arcminute
 - One-year proprietary period
 - ☺ Working on processing all data for public use!
- Others
 - do not exist (WSRT, OVRO, PdBI, GMRT)
 - painful to search (BIMA, EVN/JIVE)

Sources of radio data: Archives

• NRAO: clec > -40

- Very Large Array (VLA): the workhorse, ~3 TB of data!
- Very Long Baseline Array (VLBA)
- Green Bank Telescope (GBT)
- One-year proprietary period
- Returns raw data via ftp
- Australia Telescope Compact Array (ATCA): dec < -30</p>
 - 18-month proprietary period
 - E-mail to get raw data
- MERLIN: high-res'n for dec > 0-ish
 - One-year proprietary period
 - ☺ Working on processing all data for public use!
- Others
 - do not exist (WSRT, OVRO, PdBI, GMRT)
 - painful to search (BIMA, EVN/JIVE)

Sources of radio data: Archives

NRAO

- Very Large Array (VLA): the workhorse, ~3 TB of data!
- Very Long Baseline Array (VLBA)
- Green Bank Telescope (GBT)
- Returns raw data via ftp
- Australia Telescope Compact Array (ATCA)
 - E-mail to get raw data
- MERLIN (England)
 - © Working on processing all data for public use!
- Others
 - do not exist (WSRT, OVRO, PdBI, GMRT)
 - painful to search (BIMA, EVN/JIVE)

Finding radio data: choosing the telescope North or south? - Dec $>-40 \rightarrow$ VLA/VLBA • Dec> $0 \rightarrow MERLIN$ - Dec $< -30 \rightarrow$ ATCA Desired resolution & source size? - VLA/ATCA: arcsecond to arcmin resolution over few to 10s of arcminutes - MERLIN: 10s of milliarcseconds res'n over arcmin - VLBA: milliarcsecond res'n over arcseconds

Finding radio data: checking the (VLA) archive

NRAO Data Archive System

Returns a tabular listing based on query parameters

You are here : Archive Home > Advanced Query

Bements highlighted in yellow are not yet working

This forms page is a test bed mainly for testing the functionally of different types and combinations of archive queries. The organization and appearance of the page is somewhat of a mess. Once we better understand what kinds of advanced queries our users will require, the forms page will be reorganized into something more rational. (It always page to be optimistic.)

Submit Query	Check Query	Clear Form					
Enter key to access locked project data :							
Cutput Control Parameters :							
Query Returns : Obs. Summar	y Table Son Co	dumn 1 : Starttime					
Archive Data Type : ALL	Sort	Order 1 : Asc					
Output Format: HIML	Son C	dumn 2: Stantume					
Max Output Rows : 1000	Sort	Order 2: ASC					
General Search Parameters :							
Program ID	Project Segment						
Observer Name	Archive File ID						
Dates From	То						
Object Search Field :							
Object Name 3C433	Search Type SIM	BAD Resolver					
Directed Search Field :							
Long_center	u_osnier 1	Search Pacius 0.2					
Long_range	al_range	Bei J2000 Frame Galactic					

 Search by
 source name (SIMBAD) or position + radius
 VLA configuration
 obs. Frequency

Actively evolving – feedback is very welcome!!!

Finding radio data: checking the (VLA) archive

NRAO Archive DB Query Results - OBSSUMMARY Table Listing

Data Selection Parameters :

Object Name = 3C433SIMB AD Long. Center = 21h23m44.75sSIMB AD Lat. Center = $+25d04^{\circ}17.8^{\circ}$ Search Radius = 0.2Obs. Bands = X Max Rows = 1000 Table Sort Order : Sort By = Stattime Sort Order = Asc

Displaying mows : 12

Project	Source	IF Band	Ref Freq	First Time	Last Time	Ехролиге	Bandwidth	Config	chana
AB0534	36433	x	8235.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	В	1
AB0534	3 C4 33	x	8465.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	В	1
AB0568	21232503	x	8414.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0568	21232503	x	8464.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0534	3C433	x	8235.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3 C4 33	x	8465.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8414.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0534	3 C4 33	x	8464.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0667	21232504	x	8414.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AB0667	21232504	x	8464.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AK0403	3C433	x	8414.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1
AK0403	3C433	x	8464.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1

Returns:

- Observing frequency
- Configuration
- Exposure time
- Bandwidth
- •Number of channels

Umm...

- what's an array configuration?
- why does the frequency matter?
- what's up with this %&%* column listing the number of channels?!?

How do I choose which data to look at???

Finding radio data: checking the (VLA) archive Search by position, array configuration, frequency – Umm...what's an array configuration? – …and why does the frequency matter? ...and what's up with this %&%* column listing the number of channels?!? How do I choose which data to look at???

First, have a stiff drink...

Choosing your data: field-of-view

Antenna response (primary beam): Θ∝ λ/D
 VLA/ATCA/VLBA:

30 arcmin @ 20cm (1.4 GHz) 9 arcmin @ 6cm (4.9 GHz) 3 arcmin @ 2cm (15 GHz)

1 arcmin @ 0.7cm (45 GHz)

Chromatic aberration (beam smearing)

- can't focus wide bandwidths all at once, over the entire primary beam
- leads to radial smearing towards edges of field at higher resolutions (e.g., VLA/A config.)
- → If you have a nice high-res'n image with lots of dots in the middle and radial smears further out, talk to someone!

Choosing your data: resolution The four VLA configurations:

A: 36km 0.3" @ 6cm

B: 11km 1.2" @ 6cm

D: 1.0 km 14″ @ 6cm

C: 3.4km 4" @ 6cm

Choosing your data: resolution

"So it's easy: you always use A configuration!" Well...no...:

 <u>Surface brightness sensitivity</u>: you want to match the resolution to the source size, for maximum sensitivity

Chromatic aberration

 Interferometers act as <u>spatial filters</u>...and you're quite likely to high-pass filter your source away

- Interferometers have the resolution of a telescope the size of the antenna separation (e.g. kilometers)
- Unfortunately that size scale's the only one they measure!
 - hence the need for >> 2 antennas ③

 If you have lots of telescopes widely separated from one another, you learn lots about the finescale source structure...and nothing at all about the source as a whole.

- For math types: we measure only the high-frequency Fourier components

A: 36km 0.3" @ 6cm

B: 11km 1.2" @ 6cm

C: 3.4km 4" @ 6cm

C: 3.4km 4" @ 6cm

B: 11km 1.2" @ 6cm

C: 3.4km 4" @ 6cm

A+B+C+D

110000

0.

B. 1:3"

С 4″

AIPS User 213 CASA: A

AIPS User 213 CAS A: B CLN

B 1.3″

C 4″

AIPS User 213 CASA: A

C

4″

AIPS User 213 CAS A: B CLN

B 1.3″

Cas A: four VLA configurations

AIPS User 213 CASA: A

AIPS User 213 CAS A: B CLN

B 1.3″

C 4″

AIPS User 213 CAS A: D CLN

D 15″

Cas A: four VLA configurations

AIPS User 213 CASA: A

B 1.3″

> D 15″

C 4″

AIPS User 213 CAS A: C CLN

A+B+C+D 0.3" + total flux

The Obs. Status Summary

Table 3: Configuration Properties

	Configuration	Α	В	С	D
	$B_{ m max}(m km^1)$	36.4	11.4	3.4	1.03
	$B_{\min}(\mathrm{km}^1)$	0.68	0.21	0.035^{5}	0.035
		Synthes	ized Beam	width $\theta_{\rm HPBW}($	$\operatorname{arcsec})^{1,2,3}$
	400 cm	24.0	80.0	260.0	850.0
	90 cm	6.0	17.0	56.0	200.0
-	20 cm	1.4	3.9	12.5	44.0
Resolution	6 cm	0.4	1.2	3.9	14.0
	$3.6~\mathrm{cm}$	0.24	0.7	2.3	8.4
	$2 \mathrm{cm}$	0.14	0.4	1.2	3.9
	$1.3~\mathrm{cm}$	0.08	0.3	0.9	2.8
	$0.7~\mathrm{cm}$	0.05	0.15	0.47	1.5
		Large	est Angular	Scale $ heta_{ m LAS}$ (a	$(\operatorname{arcsec})^{1,4}$
	400 cm	800.0	2200.0	20000.0	20000.0
Largest	90 cm	170.0	540.0	4200.0	4200.0
Largest	20 cm	38.0	120.0	900.0	900.0
visihle	$6 \mathrm{cm}$	10.0	36.0	300.0	300.0
	$3.6~\mathrm{cm}$	7.0	20.0	180.0	180.0
structure	$2~{ m cm}$	4.0	12.0	90.0	90.0
	$1.3~\mathrm{cm}$	2.0	7.0	60.0	60.0
	$0.7~\mathrm{cm}$	1.3	4.3	43.0	43.0

Finding radio data: checking the (VLA) archive

NRAO Archive DB Query Results - OBSSUMMARY Table Listing

Data Selection Parameters :

Object Name = 3C433SIMB AD Long. Center = 21h23m44.75sSIMB AD Lat. Center = $+25d04^{+}17.8^{*}$ Search Radius = 0.2Obs. Bands = X Max Rows = 1000 Table Sort Order : Sort By = Starttime Sort Order = Asc

Displaying mows : 12

Project	Source	IF Band	Ref Freq	First Time	Lest Time	Exposure	Bandwidth	Conf) chana
AB0534	3 C4 33	x	8235.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	в	1
AB0534	3C433	x	8465.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	в	1
AB0568	21232503	x	8414.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0568	21232503	x	8464.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0534	3 C4 33	x	8235.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8465.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8414.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0534	3 C4 33	x	8464.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0667	21232504	x	8414.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AB0667	21232504	x	8464.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AK0403	3 C4 33	x	8414.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1
AK0403	3C433	x	8464.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1

Returns: Obs. frequency
Configuration
Exposure time
Bandwidth

Number of channels

Choosing your data: sensitivity

$$\sigma \propto 1/(\tau \Delta v)^{1/2}$$

Longer observations are better even more true for interferometers More bandwidth is good - apart from spectroscopy, chromatic aberration, etc. Some frequency bands are more sensitive than others - depends on the instrument - 5 or 8 GHz probably a good bet

The Obs. Status Summary

Table 4: VLA Sensitivity									
Frequency	Band Na	ıme	System	Antenna	RMS (10 min)				
(GHz)	approximate	letter	Temperature ¹	$Efficiency^2$	Sensitivity				
	wavelength	code	(K)	(%)	(mJy)				
0.073 - 0.0745	400 cm	4	1000-10000	15	$150^{(3)}$				
0.3 - 0.34	90 cm	Р	150-180	40	$1.4^{(3)}$				
1.24 - 1.70	20 cm	L	35	55	0.056				
4.5 - 5.0	6 cm	С	45	69	0.054				
8.1 - 8.8	$3.6~\mathrm{cm}$	Х	35	63	0.045				
14.6 - 15.3	$2~{ m cm}$	U	120	58	0.19				
22.0 - 24.0	$1.3 \mathrm{cm}$	K	50 - 80	40	$0.10^{(4)}$				
40.0 - 50.0	$0.7~\mathrm{cm}$	Q	80	35	$0.25^{(5)}$				
Frequency	RMS Point-Source	Untapered	Antenna	Peak/Total	RMS				
Frequency	RMS Point-Source Sensitivity	Untapered Brightness	Antenna Primary	Peak/Total Confusing	${ m RMS} { m Confusion}$				
Frequency	RMS Point-Source Sensitivity (12 hours)	Untapered Brightness Sensitivity ⁽⁶⁾	Antenna Primary Beam Size	Peak/Total Confusing Source	RMS Confusion Level				
Frequency	RMS Point-Source Sensitivity (12 hours)	Untapered Brightness Sensitivity ⁽⁶⁾ (D-config)	Antenna Primary Beam Size (FWHP)	Peak/Total Confusing Source in Beam	RMS Confusion Level (D-config)				
Frequency (GHz)	RMS Point-Source Sensitivity (12 hours) (mJy)	Untapered Brightness Sensitivity ⁽⁶⁾ (D-config) (mKelvins)	$\begin{array}{c} \text{Antenna} \\ \text{Primary} \\ \text{Beam Size} \\ (\text{FWHP}) \\ \theta_{\text{PB}} \end{array}$	Peak/Total Confusing Source in Beam (Jy)	RMS Confusion Level (D-config) (mJy)				
Frequency (GHz) 0.073 - 0.0745	RMS Point-Source Sensitivity (12 hours) (mJy) 15 ⁽³⁾	Untapered Brightness Sensitivity ⁽⁶⁾ (D-config) (mKelvins) 300	$\begin{array}{c} \text{Antenna} \\ \text{Primary} \\ \text{Beam Size} \\ (\text{FWHP}) \\ \theta_{\text{PB}} \\ \hline 700' \end{array}$	Peak/Total Confusing Source in Beam (Jy) 20/350	RMS Confusion Level (D-config) (mJy) lots				
Frequency (GHz) 0.073 - 0.0745 0.3 - 0.34	$\begin{array}{c} \text{RMS Point-Source} \\ \text{Sensitivity} \\ (12 \text{ hours}) \\ \\ \hline \\ (\text{mJy}) \\ \hline \\ 15^{(3)} \\ 0.17^{(3)} \end{array}$	Untapered Brightness Sensitivity ⁽⁶⁾ (D-config) (mKelvins) 300 52.0	Antenna Primary Beam Size (FWHP) θ_{PB} 700' 150'	Peak/Total Confusing Source in Beam (Jy) 20/350 1.8/15	RMS Confusion Level (D-config) (mJy) lots 500				
Frequency (GHz) 0.073 - 0.0745 0.3 - 0.34 1.24 - 1.70	RMS Point-Source Sensitivity (12 hours) (mJy) 15 ⁽³⁾ 0.17 ⁽³⁾ 0.0066	Untapered Brightness Sensitivity ⁽⁶⁾ (D-config) (mKelvins) 300 52.0 1.9	Antenna Primary Beam Size (FWHP) θ_{PB} 700' 150' 30'	Peak/Total Confusing Source in Beam (Jy) 20/350 1.8/15 0.11/0.35	RMS Confusion Level (D-config) (mJy) lots 500 30				
Frequency (GHz) 0.073 - 0.0745 0.3 - 0.34 1.24 - 1.70 4.5 - 5.0	RMS Point-Source Sensitivity (12 hours) (mJy) 15 ⁽³⁾ 0.17 ⁽³⁾ 0.0066 0.0064	$\begin{array}{c} \text{Untapered} \\ \text{Brightness} \\ \text{Sensitivity}^{(6)} \\ \text{(D-config)} \\ \text{(mKelvins)} \\ \hline 300 \\ 52.0 \\ 1.9 \\ 1.9 \\ 1.9 \end{array}$	Antenna Primary Beam Size (FWHP) θ_{PB} 700' 150' 30' 9'	Peak/Total Confusing Source in Beam (Jy) 20/350 1.8/15 0.11/0.35 0.002	RMS Confusion Level (D-config) (mJy) lots 500 30 1				
Frequency (GHz) 0.073 - 0.0745 0.3 - 0.34 1.24 - 1.70 4.5 - 5.0 8.1 - 8.8	$\begin{array}{c} {\rm RMS \ Point-Source} \\ {\rm Sensitivity} \\ (12 \ hours) \\ \hline \\ \hline \\ ({\rm mJy}) \\ 15^{(3)} \\ 0.17^{(3)} \\ 0.0066 \\ 0.0064 \\ 0.0053 \end{array}$	Untapered Brightness Sensitivity ⁽⁶⁾ (D-config) (mKelvins) 300 52.0 1.9 1.9 1.9 1.5	Antenna Primary Beam Size (FWHP) θ_{PB} 700' 150' 30' 9' 5.4'	Peak/Total Confusing Source in Beam (Jy) 20/350 1.8/15 0.11/0.35 0.002 0.001	RMS Confusion Level (D-config) (mJy) lots 500 30 1 0.4				
Frequency (GHz) 0.073 - 0.0745 0.3 - 0.34 1.24 - 1.70 4.5 - 5.0 8.1 - 8.8 14.6 - 15.3	$\begin{array}{c} {\rm RMS \ Point-Source} \\ {\rm Sensitivity} \\ (12 \ hours) \\ \hline \\ \hline \\ (mJy) \\ 15^{(3)} \\ 0.17^{(3)} \\ 0.0066 \\ 0.0064 \\ 0.0053 \\ 0.020 \\ \end{array}$	$\begin{array}{c} \text{Untapered} \\ \text{Brightness} \\ \text{Sensitivity}^{(6)} \\ \text{(D-config)} \\ \text{(mKelvins)} \\ \hline 300 \\ 52.0 \\ 1.9 \\ 1.9 \\ 1.5 \\ 6.0 \\ \end{array}$	Antenna Primary Beam Size (FWHP) θ_{PB} 700' 150' 30' 9' 5.4' 3'	Peak/Total Confusing Source in Beam (Jy) 20/350 1.8/15 0.11/0.35 0.002 0.001 0.0001	$\begin{array}{c} \mathrm{RMS} \\ \mathrm{Confusion} \\ \mathrm{Level} \\ \mathrm{(D-config)} \\ \mathrm{(mJy)} \\ \mathrm{lots} \\ 500 \\ 30 \\ 1 \\ 0.4 \\ 0.05 \end{array}$				
Frequency (GHz) 0.073 - 0.0745 0.3 - 0.34 1.24 - 1.70 4.5 - 5.0 8.1 - 8.8 14.6 - 15.3 22.0 - 24.0	$\begin{array}{c} {\rm RMS \ Point-Source} \\ {\rm Sensitivity} \\ (12 \ hours) \\ \hline \\ \hline \\ (mJy) \\ 15^{(3)} \\ 0.17^{(3)} \\ 0.0066 \\ 0.0064 \\ 0.0053 \\ 0.020 \\ 0.025^{(4)} \end{array}$	$ \begin{array}{c} {\rm Untapered} \\ {\rm Brightness} \\ {\rm Sensitivity}^{(6)} \\ ({\rm D-config}) \\ ({\rm mKelvins}) \\ \hline \\ 300 \\ 52.0 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.5 \\ 6.0 \\ 10.0 \\ \end{array} $	$\begin{array}{c} {\rm Antenna} \\ {\rm Primary} \\ {\rm Beam \ Size} \\ ({\rm FWHP}) \\ \\ \hline \theta_{\rm PB} \\ \hline 700' \\ 150' \\ 30' \\ 9' \\ 5.4' \\ 3' \\ 2' \end{array}$	Peak/Total Confusing Source in Beam (Jy) 20/350 1.8/15 0.11/0.35 0.002 0.001 0.0001 0.0001	$\begin{array}{c} \mathrm{RMS} \\ \mathrm{Confusion} \\ \mathrm{Level} \\ \mathrm{(D-config)} \\ \mathrm{(mJy)} \\ \mathrm{lots} \\ 500 \\ 30 \\ 1 \\ 0.4 \\ 0.05 \\ \end{array}$				

Finding radio data: checking the (VLA) archive

NRAO Archive DB Query Results - OBSSUMMARY Table Listing

Data Selection Parameters :

Object Name = 3C433SIMB AD Long. Center = 21h23m44.75sSIMB AD Lat. Center = $+25d04^{\circ}17.8^{\circ}$ Search Radius = 0.2Obs. Bands = X Max Rows = 1000 Table Sort Order : Sort By = Starttime Sort Order = Asc

Displaying nows : 12

Project	Source	IF Band	Ref Freq	First Time	Lest Time	Exposure	Bandwidth	C onflg	chana
AB0534	3 C4 33	x	8235.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	9110	50.000	в	1
AB0534	3C433	x	8465.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	9110	50.000	в	1
AB0568	21232503	x	8414.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0568	21232503	x	8464.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0534	3 C4 33	x	8235.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8465.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8414.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0534	3 C4 33	x	8464.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0667	21232504	x	8414.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AB0667	21232504	x	8464.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
АК040Э	3 C4 33	x	8414.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1
AK0403	3C433	x	8464.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1

Returns: Obs. frequency
Configuration
Exposure time
Bandwidth
Number of channels

Choosing your data: ease of reduction

Continuum is easier than spectral line

single-channel data are simplest

"Center" frequencies are easier than edges

1-15 GHz is easier than <1 GHz or >15 GHz

VLBI is trickier than VLA/ATCA
New data are better than old

Finding radio data: checking the (VLA) archive

NRAO Archive DB Query Results - OBSSUMMARY Table Listing

Data Selection Parameters :

Object Name = 3C433SIMB AD Long. Center = 21h23m44.75sSIMB AD Lat. Center = $+25d04^{\circ}17.8^{\circ}$ Search Radius = 0.2Obs. Bands = X Max Rows = 1000 Table Sort Order : Sort By = Starttime Sort Order = Asc

Displaying nows : 12

Project	Source	IF Bend	Ref Freq	First Time	Lest Time	Exposure	Bendwidth	Config	chana
AB0534	3 C4 33	x	8235.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	в	1
AB0534	3 C4 33	x	8465.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	в	1
AB0568	21232503	x	8414.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0568	21232503	x	8464.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0534	3 C4 33	x	8235.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8465.000	90-May-25 08:39:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3 C4 33	x	8414.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0534	3 C4 33	x	8464.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0667	21232504	x	8414.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AB0667	21232504	x	8464.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AK0403	3 C4 33	x	8414.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1
АК0403	3 C4 33	x	8464.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1

Returns: Obs. frequency
Configuration
Exposure time
Bandwidth
Number of channels

Table 4: VLA Sensitivity

Frequency	Band Na	ume	System	Antenna	RMS (10 min)
(GHz)	approximate	letter	$Temperature^1$	$Efficiency^2$	Sensitivity
	wavelength	code	(K)	(%)	(mJy)
0.073 - 0.0745	400 cm	4	1000-10000	15	$150^{(3)}$
0.3 - 0.34	90 cm	Р	150 - 180	40	$1.4^{(3)}$
1.24 - 1.70	20 cm	${ m L}$	35	55	0.056
4.5 - 5.0	$6 \mathrm{cm}$	\mathbf{C}	45	69	0.054
8.1 - 8.8	3.6 cm	Х	35	63	0.045
14.6 - 15.3	$2~{ m cm}$	U	120	58	0.19
22.0 - 24.0	$1.3 \mathrm{cm}$	Κ	50 - 80	40	$0.10^{(4)}$
40.0 - 50.0	$0.7~\mathrm{cm}$	Q	80	35	$0.25^{(5)}$
Frequency	RMS Point-Source	Untapered	Antenna	Peak/Total	RMS
	Sensitivity	$\operatorname{Brightness}$	Primary	Confusing	$\operatorname{Confusion}$
	(12 hours)	$Sensitivity^{(6)}$	Beam Size	Source	Level
		(D-config)	(FWHP)	in Beam	(D-config)
(GHz)	(mJy)	(mKelvins)	$ heta_{ m PB}$	(Jy)	(mJy)
0.073 - 0.0745	$15^{(3)}$	300	700′	20/350	lots
0.3 - 0.34	$0.17^{(3)}$	52.0	150'	1.8/15	500
1.24 - 1.70	0.0066	1.9	30'	0.11/0.35	30
4.5 - 5.0	0.0064	1.9	9'	0.002	1
8.1 - 8.8	0.0053	1.5	5.4'	0.001	0.4
14.6 - 15.3	0.020	6.0	3'	0.0001	0.05
22.0 - 24.0	$0.025^{(4)}$	10.0	2'	0.00001	
40.0 - 50.0	$0.030^{(5)}$	20.0	1'		

Dealing with data: a first look

The archives send raw uv-data, not images

- Quick & dirty processing: VLARUN, VLBARUN (kudos to Loránt Sjouwerman ③)
 - can get reasonable quick-look images in a few minutes, with no special punditry required
 - failures tend to be obvious
- Rules of thumb:
 - it is easier to destroy than to create!
 - the wackier the image, the easier it is to fix

Dealing with data: a first look

- The archives send raw uv-data, not images
- Quick & dirty processing: VLARUN, VLBARUN (kudos to Loránt Sjouwerman [©])
 - can get reasonable quick-look images in a few minutes, with no special punditry required
- Steps:
 - AIPS
 - Load in data (FILLM)
 - Set array configuration; image size; depth of deconvolution
 - VLARUN \rightarrow calibrated data & images
 - Write them out (FITTP)

M51: Surveys...

NVSS: 45"

FIRST: 5.4"

FIRST: 5.4" res'n

Finding radio data: checking the (VLA) archive

NRAO Archive DB Query Results - OBSSUMMARY Table Listing

Data Selection Parameters : Object Name = 3C433 SIMB AD Long. Center = 21h23m44.75s SIMB AD Lat. Center = +25d04'17.8" Search Radius = 0.2 Obs. Bands = X Max Rows = 1000 Table Sort Order : Sort By = Starttime Sort Order = Asc

Displaying nows : 12

Project	Source	IF Band	Ref Freq	First Time	Last Time	Ехролиге	Bandwidth	Config	chana
AB0534	3 C4 33	x	8235.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	в	1
AB0534	3 C4 33	x	8465.000	89-Apr-07 18:32:24	89-Jul-02 12:56:05	3110	50.000	В	1
AB0568	21232503	x	8414.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0568	21232503	x	8464.900	90-May-04 13:05:14	90-May-04 13:07:25	130	100.000	A	1
AB0534	3 C4 33	x	8235.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8465.000	90-May-25 08:33:04	90-May-26 13:46:44	7700	50.000	A	1
AB0534	3C433	x	8414.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0534	3 C4 33	x	8464.900	91-May-23 16:03:14	91-May-23 16:06:14	180	100.000	D	1
AB0667	21232504	x	8414.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
AB0667	21232504	x	8464.900	93-Jan-03 22:00:45	93-Jan-03 22:02:45	120	100.000	A	1
АК0403	3 C4 33	x	8414.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1
AK0403	3 C4 33	x	8464.900	95-Jul-27 09:35:45	95-Jul-27 14:27:45	360	100.000	A	1

Obs. Frequency 1.4 GHz for size Configuration •C for res'n (15") + large structure **Exposure time** Longest available Continuum

...and the archive

VLA/C: 15"

VLA/C @ 20cm: 15" res'n

3C433: NVSS...

D @ 20cm: 45" res'n

...and the archive:

R

c B+c+ VLA/B+C+D @ 4cm → 1.5" res'n Elapsed time: ~1 hour

Dealing with data: a first look

- Failures tend to be obvious:
 - it is easier to destroy than to create!
 - the wackier the image, the easier it is to fix

IC10

IC10

Note the flux density scale!

Flag two 10-second records...

IC10

Flag two 10-second records...

...et voilá!

Dealing with data: the next steps

- Lots of documentation
 - Observational Status Summary (VLA/VLBA)
 - Synthesis Imaging Schools & books
 - AIPS Cookbook
- We're here to help!
 - E-mail: analysts@nrao.edu
 - Auto-analysis of VLBI data
 - Short- or long-term visits to NRAO, with hands-on help at any level
- Travel & page charge support for some archival work

The future

• Actively working on improving the archive - already producing lots of good stuff: e.g., half the posters here! • e2e is required for ALMA and the EVLA Lots of new radio telescopes coming this decade: SMA, EVLA, ALMA, eMERLIN, ... \rightarrow a good time to learn!