Magnetohydrodynamics of pulsar winds and plerions

Yuri Lyubarsky

Ben-Gurion University, Israel

The hoop stress

Magnetic hoop stress $F = \frac{1}{c} j \times B$

Total force $F = \rho_e E + \frac{1}{c} j \times B$ $E + \frac{1}{c} v \times B = 0$

As $v \rightarrow c$ the electric and magnetic forces nearly cancel each other

In the far zone, the magnetic field is nearly azimuthal

How the electromagnetic energy is transformed into the plasma energy?

Non-oscillating fields: no energy release mechanism

Waves: various dissipation mechanisms (Usov 1975; Michel 1982, 1994; Coroniti 1990; Melatos & Melrose 1996; Lyubarsky & Kirk 2001; Lyubarsky 2003; Kirk & Skjaeraasen 2003; Melatos & Skjeraasen 2004)

$$B \propto \frac{1}{r} \qquad j \approx \frac{B}{\lambda} \propto \frac{1}{r}$$
$$n \propto \frac{1}{r^2} \qquad v_{\text{current}} \propto \frac{j}{n} \propto r$$

Observations suggest that the energy flows from the pulsar predominantly within the equatorial belt

What theory says about the angular distribution of the energy flux in the pulsar wind?

Split monopole solution Michel (1973) – aligned rotator Bogovalov (1999) – oblique rotator

 $f_w = \frac{f_0}{r^2} (\sin^2 \theta + \frac{1}{\sigma_0}),$

In the equatorial belt, most of the energy is transferred by alternating electro-magnetic field

The fate of the alternating field

- Dissipation in the wind: very difficult, extreme assumption (Lyubarsky&Kirk 2001; Kirk&Skjaeraasen 2003)
- 2.Dissipation at the termination shock: driven reconnection (Lyubarsky, in progress)

The shock in a striped wind (1.5D PIC simulations)

MHD flow beyond the termination shock is determined only by the total energy flux and the mean magnetic field in the wind

The mean field=0 at the equator and at the axis

Origin of the get-torus structure (Lyubarsky 2002)

MHD simulations of the pulsar wind nebula Komissarov & Lyubarsky 2003

$$f_{w} = \frac{f_{0}}{r^{2}} (\sin^{2}\theta + \frac{1}{\sigma_{0}});$$
$$B = \sqrt{\frac{4\pi f_{0}}{c}} \frac{\xi}{r} \sin\theta \left(1 - \frac{2\theta}{\pi}\right);$$

 $\xi \leq 1$

$$\sigma = 0.1\xi^2$$

Pulsar plasma fills in the cavity within the expanded cold envelope

magnetic field and velocity

Gas pressure and velocity field around the termination shock

Magnetic pressure/gas pressure

Simulated images

Synchrotron Emission

Synchrotron Emission -2 2 ò х -1.5 -1-0.50

σ=0.004

σ=0.009

σ=0.025

Simulated image, σ =0.009, with magnetic field at the axis

Chandra image of the Crab Nebula

Particle acceleration at the termination shock in a striped wind

Radio emitting electrons are accelerated now in the same region as the ones responsible for optical to X-ray emission (Gallant & Tuffs; Bietenholtz, Frail & Hester)

Difference image at 4615 MHz (1998 Aug 9-Oct 13)

$$N(E) = KE^{-1.6} \text{ from } E_{\min} \le 100 \text{MeV to } E_{br} \approx 1 \text{ TeV}$$
$$N = \int N(E) dE = \frac{K}{0.6} E_{\min}^{-0.6} \qquad \mathcal{E} = \int EN(E) dE = \frac{K}{0.4} E_{br}^{0.4}$$

Particle acceleration in the standard (kinetic energy dominated) shock

Fermi acceleration at ultra-relativistic shocks: $N(E) = KE^{-(2.2 \div 2.3)}$

(Bednarz & Ostrowski 1998; Gallant & Achterberg 1999; Kirk, Guthman, Gallant & Achterberg 2000)

- Gallant, van der Swalluw, Kirk, Achterberg (2002): Ion dominated wind
 - $\Gamma \approx 100; \quad \dot{N}_{p} \approx 10^{39} \text{ s}^{-1}; \quad \dot{N}_{e^{\pm}} \approx 10^{40} \div 10^{41} \text{ s}^{-1}$ $\dot{N}_{GJ} = 3 \cdot 10^{34} \text{ s}^{-1}$
 - 2. Lyubarsky (2003): Dissipation of the Poynting

flux at the termination shock

Conclusions

1. Most of the energy is transferred in the equatorial belt by alternating magnetic fields

2. Magnetization of the postshock flow is determined only by the mean magnetic field (=0 at the equator)

- 3. Termination shock is highly non-spherical
- 4. The jet is formed beyond the termination shock

Unsolved problems

- 1. Azimuthal symmetry of the internal ring.
- 2. Wisps
- 3. Flat spectrum of the radio emitting electrons

$$r_L = \frac{\varepsilon}{eB}$$

$$\delta pprox \sqrt{rac{arepsilon_{\max}}{eB_0}}$$

$$E = \frac{v}{c} B \propto \varepsilon$$

Crab's jet

Chandra

HST difference image