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Abstract

Our poster focuses on the emission process(es) respon-
sible for the X-rays from ’k25’, a knot in the jet of
3C120. We argue that models using thermal, syn-
chrotron self-Compton, and inverse-Compton/cosmic
microwave background processes encounter difficul-
ties, and that the X-rays from the k25 knot most
likely come from synchrotron emission. Since the two
brightest parts of k25 appear to have flat X-ray spec-
tra, we suggest that either the shocks on the two edges
of the radio knot produce a power law distribution of
relativistic electrons (N

���������	��

) characterized by

p � 2, or that for high electron energies, there is a sig-
nificant departure from the power law defined by the
radio data.

1 Introduction

This contribution is meant to closely resemble the
poster presented at the meeting. A full length article
will be submitted to the ApJ.
3C120 is a nearby (  = 0.033) radio galaxy often de-
scribed as a Seyfert optically, but with a complex radio
structure on many scales (Fig. 1). The inner jet, of in-
terest to us, is one sided and exhibits superluminal mo-
tions at Very Long Baseline Interferometry scales. For
a luminosity distance of 140 Mpc, 1 � � corresponds to
0.64 kpc. We follow the usual convention for spectral
index: flux density, S � ��� ���

.
Our primary focus here is to evaluate the emission pro-
cess(es) for the X-rays coming from various features
of the radio jet. By way of introduction, we show an
HST image (Fig. 2), a Chandra image (Fig. 3), and an
enlarged view of the primary knot of interest, ’k25’

Figure 1: The radio emission at many scales.

which is resolved and lies approximately 25 � � from the
core (Fig. 4). The radio contours used in these figures
come from data reported in Walker (1997).

1.1 Spectra of knots k4 and k25

The X-ray photometry relies on flux maps generated
from an archival Chandra observation of the zero order
image from data taken with the high energy transmis-
sion grating. Four energy bands were used and flux
densities are plotted together with optical and radio
values in Fig. 5 (knot k4) and 6 (the 3 parts of k25,
showing only the X-ray spectra).
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Figure 2: An HST image of 3C120 with radio contours
overlaid. Knot ’k4’ in the jet is labeled.
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Figure 3: A Chandra image with radio contours.

2 Synchrotron parameters

The basic parameters for no beaming are given in the
first 6 columns of Table 1. These are followed by the
jet frame luminosity and half-life (observer’s frame) of
electrons responsible for the observed 2 keV emission,
for representative values of � : 3 and 6.

All these parameters appear to be reasonable and fail
to define any problems with synchrotron models.

3 Thermal bremsstrahlung parameters

The standard arguments against the thermal brems-
strahlung emission process include
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Figure 4: Knot ’k25’. The image is from Chandra
(smoothed with a Gaussian of FWHM = 0.5 � � ) with radio
contours overlaid. Also shown are the three regions used
for photometry: The lower rectangle is the ’inner’ part of
the knot (facing upstream); the rectangle to the right is the
’outer’ region; and the circle is the ’new’ part. Also shown
with a dashed line is a segment of the background circle.

� if the X-ray emission occupies the same volume
as the radio emission, there would be a departure
from the ��� law for the radio polarization position
angle;

� if the thermal region surrounds the emitting re-
gion, the predicted large rotation measures are not
seen; and

� the thermal pressure of the emitting region gener-
ally exceeds the estimate of the ambient gas pres-
sure.

For the inner jet, the observed Faraday rotation mea-
sures (RM’s) are small (0 to � 10 radians m

� � , Walker
et al. 1987) and although the radio polarization for k25
has a low signal-to-noise ratio, the observed position
angles suggest that RM(k25) � 100. Thus the large
predicted RM’s (Table 2) would appear to preclude
thermal X-ray emission.

4 Inverse Compton parameters

Inverse Compton (IC) emission from scattering on cos-
mic microwave background (CMB) photons by jet fea-
tures with relativistic beaming has been suggested as
a method to increase the energy produced via the IC
channel relative to that in the synchrotron channel
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Table 1: Synchrotron parameters
� = 3 � = 3 � = 6 � = 6

Region B(1) ��� ����� logL  !#"$ logL  !#"$ logL  !#"$
( % G) (erg s

�'&
) (years) (erg s

�'&
) (years) (erg s

�'&
) (years)

k4 116 0.74 0.9 41.829 23 39.921 56 38.716 27
k25inner 36 0.74 0.82 41.142 131 39.233 108 38.029 18
k25outer 27 0.66 0.81 41.448 195 39.539 105 38.335 16
k25new 9 ... 0.70 41.241 669 39.332 74 38.128 9

� is the beaming factor
B(1) is the equipartition magnetic field strength for the case � = 1. For other values of � , it is B(1)/ � (Harris &
Krawczynski, 2002).
��� is the radio spectral index.
����� is the spectral index connecting the radio to the X-ray bands.
!#"$ is the half-life, as observed at the earth, for the electrons responsible for the observed 2 keV emission (Eq. B7
of Harris & Krawczynski, 2002, assuming ( = � ).
The emission spectrum is assumed to cover the range 10 ) to 5 * 10

&,+
Hz in the observed frame.

Table 2: Thermal bremsstrahlung parameters
Region n - !/. Mass Pressure RM

(cm
��0

) (years) ( 132 ) (dyne cm
� � ) (m

� � )
k4 6.6 1.5 * 10 4 6.3 * 10 ) 2.0 * 10

��+
22,450

k25inner 1.7 5.6 * 10 4 8.0 * 10 ) 5.6 * 10
��5

5,780
k25outer 1.9 5.2 * 10 4 2.4 * 10 6 5.6 * 10

��5
11,450

k25new 0.5 1.9 * 10 ) 4.0 * 10 6 1.5 * 10
��5

7,520
798 is the cooling time.
The electron density is that necessary for a uniform plasma with the volume estimated from the highest resolution radio data.
The pressure values assume a temperature of 1 keV.
RM gives the predicted rotation measure for a field of 10 : G and a path-length corresponding to the depth of the emitting
volume. RM(rad m ;=< ) = 810 > B ?@: G) > dL(kpc) >'ACB (cm ;=D ).

Table 3: IC/CMB parameters
Region � B(1) R(1) � E R’ DfC

% G ( (deg) (kpc)
k4 0.74 116 0.0917 16 3.5 65 42
k25in 0.74 36 0.3967 13 4.5 352 184
k25out 0.66 27 0.1939 18 3.2 1840 269
k25new 0.70 10 1.3454 14 4.1 5060 215

F is the spectral index for both the IC and synchrotron spectra. For both k25in and k25out, the actual X-ray spectrum is
significantly flatter than the radio spectrum, so that is another problem for the IC/CMB beaming model.
B(1) is the equipartition magnetic field strength for no beaming.
R(1) is the ratio of amplitudes of the IC to synchrotron (observed) spectra.
The G / H column gives their values for H = G , and the relevant angle to the line of sight is I .
R’ is the ratio of E < losses in the jet frame (IC/synchrotron).
DfC is the de-projected distance from the core for the particular feature (projected distance/sin I ).
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Figure 5: The radio-optical-X-ray spectrum of k4.

(Celotti et al. 2001, Tavechhio et al. 2000). The beam-
ing parameters given in Table 3 are not entirely unrea-
sonable if the ( of the jet does not decrease signifi-
cantly out to k25. However, as noted in the table, for
several features the spectral index observed in the X-
ray band disagrees with that expected from the radio
spectrum. Additionally, the small angles of the jet to
the line of sight (of order 5 J ) for most of the knots also
leads one to infer a large projection effect so that the
physical size of the jet becomes uncomfortably long.
Furthermore, the beaming parameters required ( (LKM�NKOE )
are more extreme than those generally applied to the pc
scale jet (Gomez et al.; Walker et al. 1987). For these
reasons, we disfavor the IC/CMB emission model.

5 Conclusions

For k25, synchrotron self-Compton emission is unten-
able because the energy density of the magnetic field
is always 10 to 1000 times greater than that of the syn-
chrotron photons. Relying on bulk relativistic veloci-
ties to increase the effective energy density of the CMB
requires small angles to the line of sight and unreason-
ably large values of the beaming factors (see Atoyan &
Dermer, 2004, for general problems for IC/CMB mod-
els). Although thermal bremsstrahlung is a tempting
explanation of the flat spectra associated with the outer

Figure 6: The X-ray spectra for 3 parts of k25. The lines
leading off to the left connect to the radio data. The dashed
line is for the ‘inner’ region; the solid line for the ‘outer’
region; and the dotted line for the ‘new’ region.

and inner edges of k25, the rotation measures thereby
expected are not observed.
If the flat X-ray spectra of the inner and outer edges
is synchrotron emission, then either the power law for
the electron distribution defined by the lower frequen-
cies suffers a ’pileup’ at the high energy end (see, e.g.,
Dermer & Atoyan, 2002) or there is a separate spec-
tral component which is flatter than that produced by
the conventional shock acceleration theories (N

���P�Q�
�R��


with p S 2). Although the X-ray emission from
’k25new’ appears to have a more normal spectrum,
both the radio and X-ray emission from this region
have very low brightnesses, making it difficult to mea-
sure the region’s properties well enough to draw con-
vincing conclusions.
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