

High Frequency Radio Interferometry John Tobin - NRAO Charlottesville

Outline

- Definition of 'High Frequency'
 - \circ Science @ high frequencies
- Requirements for High Frequency Observing
 - \circ Transmission
 - Stability
 - Phase Referencing
 - Fast Switching
 - WVRs
 - Band-to-Band Calibration
- Epilogue
 - \circ Self-calibration

Points to Note

- Gain Calibrator = Phase calibrator sometimes called Complex Gain calibrator
- Phase errors can have two effects
 - Random phase variations can decorrelate, reducing the peak amplitude
 - Systematic phase offsets can introduce position shifts
- **Coherence** peak intensity/true flux density (valid for point sources only)
 - reductions from 1.0 == **Decoherence**
- Phase RMS (Noise) variations in phase wrt their average over a period of time
- Atmospheric opacity (or its inverse transmission) how much incoming signal arrives at telescope

High Frequencies

- Definition is subjective
 - @VLA ~12 50 GHz; ALMA entirely high frequency 30 900 GHz
 - However > 385 GHz (Bands 8, 9, and 10) can require special considerations
- Why are high frequencies interesting?
 - Dust brightest toward higher frequencies
 - Many bright molecular lines, RRLs, some atomic lines
 - Higher frequencies always provide highest angular and spectral resolution at a given configuration/spectral setup
 - 5 mas ALMA best resolution (Band 10); ~30 mas VLA best resolution (Q-band)
 - Lower synchrotron opacity

High Frequencies

Requirements for Good Data at High Frequencies

- High atmospheric transmission for the band observed
- Stable atmosphere over a long enough time for phase referencing
- Phase referenced to a point-like phase calibrator, close to the target source
- Other considerations
 - Good pointing solutions, calibrator at center of antenna PB (target at least near)
 - VLA pointing updates necessary ~hourly for high-frequencies
 - Low wind speed
 - can blow the dish off-source (effects similar to poor pointing and phase errors)
 - Accurate antenna surface for observing frequency
 - Otherwise most flux scattered away

Atmospheric Opacity/Transmission

National Radio Astronomy

Constituents of Atmospheric Opacity

- Due to the troposphere (lowest layer of atmosphere (h < 10 km)
- Temperature drops with increasing altitude

 clouds/convection
- 'Dry' constituents: O₂, O₃, CO₂, Ne, He, Ar, Kr, CH₄, N₂, H₂
- H₂O: abundance is highly variable but < 1% in mass, mostly in form of water vapor
- Typically express opacity in terms of precipitable water vapor (pwv) - thickness of water layer if all converted to liquid

Opacity vs. Frequency

- Wavelengths > 1.5 cm, dry atmosphere, little opacity
- ~1.3 cm opacity mostly from H₂O vapor
- 10mm-6.5 mm opacity mostly from dry atmosphere
- At 3mm both are significant
- < 3mm mostly H_2^0
- 'hydrosols' (water droplets, i.e., clouds)
 can also add significantly to the opacity

VLA site at 4mm pwv (good conditions!)

Transmission/Opacity depends on Altitude

- Transmission is inverse of opacity
- Transmission is not a problem for most
 VLA bands (<50 GHz)
- Serious problem for ALMA at >300 GHz
- Differences are primarily due to elevation vs. scale height of the water vapor, not how 'dry' a place is on the surface

Transmission at ALMA for different PWV

			100 r
Octile	PWV (mm)	1 2. 22	
1	0.472	- Band 5*, 9 ,10	25" percentile = 0.6mm PWV
2	0.658	Band 8, 9	
3	0.913	Band 7, 8	80
4	1.262		$\overset{\circ}{\sim}$
5	1.796	Band 6	\sim 1 1 1 1 75 percentile = 2.1 mm PWV -
6	2.748	Band 4	
7	5.186	Band 1,3	
			Zenith Transmi 40 0
			100 200 300 400 500 600 700 800 900 100 Frequency (GHz)

PWV Monitoring and Forecasting

Requirements for Good Data at High Frequencies

- ✓ High atmospheric transmission for the band observed
 - High dry site
 - Dynamic scheduling
 - no choice but to wait for optimal PWV
- Stable atmosphere over a long enough time for phase referencing
- Phase referenced to a point-like phase calibration, close to the target source

Atmospheric Stability

- Transmission is one aspect of high frequency observing
- Low PWV/or high transmission does not always mean 'good observing'
- Also need good phase stability
 possible to have one without the other
- Path length variation corresponds to difference in arrival time at antennas -> phase shifts
 - Can be highly time variable

Atmospheric Stability

- Transmission is one aspect of high frequency observing
- Low PWV/or high transmission does not always mean 'good observing'
- Also need good phase stability
 possible to have one without the other
- Path length variation corresponds to difference in arrival time at antennas -> phase shifts
 - Can be highly time variable

https://www.aoc.nrao.edu/cgi-bin/weather/apipg.cgi

Mean Effect of Atmosphere on Phase - Refraction

- Index of refraction of atmosphere \neq 1, an EM wave will experience refraction
- The phase change is related to the index of refraction of air and the distance travelled by $\delta \varphi = 2\pi/\lambda \ge n$
- N = (n -1)x10⁶ is typically separated into 'dry' air and water vapor components N_{dry} = 2.2x10⁵ ρ_{tot} ρ_{tot} ~ 700 - 1000 g m⁻³ N_{H20} = 1.7x10⁹ ρ_{H20}/T_{atm} ρ_{H20} ~ 0.01 - 0.001 ρ_{tot} and T_{atm} ~ 270 K
- Dry air dominates the refraction by ~10x, but water vapor is very time variable
- $\delta \varphi \cong 6.3 \times 2\pi / \lambda \times W$ where W is the PWV in mm
- Refraction causes:
 - Pointing offsets, $\Delta\theta \approx 2.5 \times 10^{-4} \times tan(z)$ (radians) @ zenith angle z=45° typical offset is ~1 arcmin
 - Delay offsets (photon time of arrival)

These `mean' effects are generally removed by the 'online' system at the observatory

Mean Effect of Atmosphere on Phase - Refraction

- Spatial and temporal variations in the amount of PWV causes phase variations, which are worse at higher frequencies and result in:
 - Loss of coherence (reduced detected signal)
 - radio 'seeing' typicalling 0.1 1" at 1.3 mm
 - Anomalous pointing and delay offsets

Patches of air with different water vapor content (and hence index of refraction) affect the incoming wavefront differently.

Atmospheric Phase Variations

NRAO Observatory

Atmospheric Phase Fluctuations

- 'Root phase structure function' Carilli+1999
- RMS phase variations grow with baseline length until break when baseline length ~ turbulent layer thickness
- Position of break and the maximum variation depends on weather, wavelength, and site
- RMS phase of variations given by Kolmogorov turbulence theory
 - $f_{rms} Kb^a/\lambda(mm)$ (degrees)
 - b= baseline (km, a = ¹/₃ ⁵/₈, thick 3D vs thin
 2D atmosphere
 - K=constant (~100 for ALMA, 300 for VLA)

VLA phase variations vs. baseline length at 1.3 cm

Atmospheric Phase Fluctuations

- 'Root phase structure function' Carilli+1999
- RMS phase variations grow with baseline length until break when baseline length ~ turbulent layer thickness
- Position of break and the maximum variation depends on weather, wavelength, and site
- RMS phase of variations given by Kolmogorov turbulence theory
 - $f_{rms} Kb^a/\lambda(mm)$ (degrees)
 - b= baseline (km, a = $\frac{1}{3}$ $\frac{5}{6}$, thick 3D vs thin 2D atmosphere
 - K=constant (~100 for ALMA, 300 for VLA)

ALMA phase variations vs. baseline length

Significant reduction in decoherence from application of WVR correction

Atmospheric Phase Fluctuations

- 'Root phase structure function' Carilli+1999
- RMS phase variations grow with baseline length until break when baseline length ~ turbulent layer thickness
- Position of break and the maximum variation depends on weather, wavelength, and site
- RMS phase of variations given by Kolmogorov turbulence theory
 - $f_{rms} Kb^a/\lambda(mm)$ (degrees)
 - b= baseline (km, a = $\frac{1}{3}$ $\frac{5}{6}$, thick 3D vs thin 2D atmosphere
 - K=constant (~100 for ALMA, 300 for VLA)

No break in structure function, turbulent layer > 10 km in thickness, like due to dry air opacity and not water

Residual Phase and Decorrelation

- Atmosphere needs to be stable enough to calibrate phase
- Coherence = [vector avg]/[true vis amp] = $\langle V \rangle / V_o$ where, V=V_o e^{i\$\phi\$}
- $\langle V \rangle = V_o \langle e^{i\phi} \rangle = V_o e^{-\phi rms^2/2}$ (Gaussian phase fluctuations)

Degrees	Coherence		
10	0.98		
30	0.87		
~57	0.61		
100	0.22		

- Example: if $\phi_{rms} = 1$ radian (~60°), coherence = <V> = 0.60V_o
- $\phi_{\rm rms} = 30^{\circ}$ coherence (ideal) ~0.9 V_o (ideal)
- Decorrelation on shortest calibration timescale can introduce fluxscale errors

VLA Ka-band observations; C-config. 16A-197;HOPS-87

Residual Phase and Decorrelation

- Decoherence does not (always) manifest in RMS noise for science target
- Overall image RMS may not change but peak intensity is reduced
- VLA Ka-band data, C-config
 - ~7 minute cycle time

National Radio Astronomy Observatory

Decoherence/Decorrelation in Visibilities

- Example of point-like maser in K-band •
 - decorrelation reduces amplitude as function of uv-distance
 - recall point-source has zero-phase and constant amplitude •

1 hour of 22 GHz VLA observations of the calibrator 2007+404

one-minute snapshots of raw data at t = 0 and t = 59 minutes

Uncorrelated phase variations degrades and decorrelates image

⇒ Correlated phase variations = position shift

Phase at low (<4 GHz) frequencies

- Phase decoherence also possible at low frequencies, but origin different
- Tropospheric phase fluctuations scale ~linearly with increasing frequency
- Ionosphere causes phase fluctuations whose amplitudes are inversely proportional to frequency
 - Correction techniques
 - self-calibration
 - Total Electron Content correction
 - TEC information available from CASA/VLA pipeline
 - Uses information from GPS satellites and provided by NASA

Phase at low (<4 GHz) frequencies

- Phase decoherence also possible at l origin different
- Tropospheric phase fluctuations scal increasing frequency
- Ionosphere causes phase fluctuation are inversely proportional to frequer
 - Correction techniques
 - self-calibration
 - Total Electron Content corre
 - TEC information available from pipeline
 - Uses information from GPS s provided by NASA

Phase at low (<4 GHz) frequencies

- Phase decoherence also possible at l origin different
- Tropospheric phase fluctuations scal increasing frequency
- Ionosphere causes phase fluctuation are inversely proportional to frequer
 - Correction techniques
 - self-calibration
 - Total Electron Content corre
 - TEC information available from pipeline
 - Uses information from GPS s provided by NASA

Requirements for Good Data at High Frequencies

- \checkmark High atmospheric transmission for the band observed
- High dry site, suitable for highest frequency desired
- Dynamic scheduling
 - no choice but to wait for optimal PWV
- ✓ Stable atmosphere over a long enough time for phase referencing
- High dry site, suitable for highest frequency desired
- Dynamic scheduling
 - cannot wait forever, fast switching and WVRs mitigate
- Phase referenced to a point-like phase calibration, close to the target source

Phase Correction - Phase Referencing

- Like lower frequencies, high-frequency calibration requires referencing to a nearby phase calibrator
- Must visit phase calibrator on timescales shorter than the atmosphere is changing

Phase Correction - Residual Phase

uncorrected

Phase Correction - Fast Switching

• More frequent visits can reduce the RMS of the residual phases

Phase Correction - Fast Switching

- More frequent visits can reduce the RMS of the residual phases
- Can make observing with high coherence possible

- Fast switching is not free, need to consider observing efficiency
 - Target scans/(Target scans + Phase scans + overheads)
 - Overheads = slew and stabilization
 - ~2-3 seconds for ALMA
 - ~10-20 seconds for VLA (ideally, depends on calibrator distance)

Pros/Cons** ** with respect to a given fixed length observation	Longer Scan	Shorter Scan		
Target	Efficient Higher Image Sensitivity Possibly very variable phases	Inefficient Lower Image Sensitivity Lower chance of phase changes		
Phase	Inefficient Better SNR for solutions Weaker calibrators Phases can vary excessively	Efficient Low SNR for solutions Stronger calibrators only "No" phase change in the scan		

- Ultimately, need to do what is necessary to obtain good data
 - ALMA chooses for you, VLA recommends based on the observing conditions and configuration
 - Follow this advice! Never cut corners on your calibrations

• Will only hurt your data

Ο

• Times listed are calibrator cycle time

Start to end of	Calibrator Cycle Time (Min.)	А	В	С	D
cal-target-cal	Ku (12-18 GHz)	6	7	8	8
2x 20s on calibrator	K (18-26.5 GHz)	4	5	6	6
+2x 15s slew	Ka (26.5-40 GHz)	3	4	5	6
+50s on source =2 min (42% eff.)	Q (40-50 GHz)	2	3	4	5

- Fast switching does not solve all issues
 - Still looking through different atmosphere target vs. calibrator
 - Still phase variations shorter than calibrator cycle time
 - How do we track the phase while still observing the target?

- Fast switching does not solve all issues
 - Still looking through different atmosphere target vs. calibrator
 - Still phase variations shorter than calibrator cycle time
 - How do we track the phase while still observing the target?
 - Paired Antenna Calibration
 - 'Buddy' antenna stares at close calibrator while antenna on-source
 - Inefficient, needs 2x the antennas
 - CARMA used a variant of this system Perez+2010)
 - Water Vapor Radiometers
 - Measure path length change due to water vapor column in real time

Phase Correction - Water Vapor Radiometers (WVRs)

• Measure fluctuations in T_B^{atm} at water line with a radiometer, use these to derive changes in water vapor column (ΔW) path length and convert this into a phase correction using:

 $\delta \varphi \cong 6.3 \times 2\pi / \lambda \times W$ (W is the PWV in mm)

- Facilities Applying Corrections:
 - 183 GHz H₂O line (ALMA)
 - 22 GHz H₂O line (NOEMA, ATCA)
 - ngVLA planned

183 GHz

(Bremer 1997/2000 IRAM Summer School)

Phase Correction - ALMA's Need for WVRs

- Observations at 300 microns (Band 10) require a path error less than 25 microns to keep the phase fluctuations < 30 degrees (~90% coherence)
- At the ALMA site the median path fluctuation due to the atmosphere is ~200 microns on 300 m baselines (compared to max of 15 km)
- These fluctuations increase with baseline length (up to several km, see slide 21/22) with a power of about 0.6 for the ALMA site
- Changes on timescales as small as the Antenna diameter/wind speed are possible = 1 sec
- ALMA WVRs monitor changes in water line brightness

There are 4 "channels" flanking the peak of the 183 GHz water line

- Data taken every second
- Installed on all the 12m antennas
- Matching data from opposite sides are averaged
- The four channels allow flexibility for avoiding saturation

Phase Correction - Modeling the Path Change

- Challenge is converting the 183 GHz brightness into a phase correction
- 3 unknowns: PWV, temperature, pressure (in water vapor layer) in a simple plane parallel, thin layer model
- HITRAN and radiative transfer is used to derive the line shape, opacity and hence brightness temperature T_B(H2O) as a function of frequency
- The observed "spectrum" is then compared to the model predictions for a range of reasonable values of PWV, Temperature, and pressure
- After dropping smaller terms: Δ (path) = Δ (PWV) * 1741/T(H2O layer)
- The path change is converted to phase for the mean frequency of each "science" spectral window
- See ALMA Memo 587
- Implemented offline in CASA task wvrgcal

Phase Correction: Examples of WVR Correction

- Works well to remove common mode variations in typical conditions
- Simplicity of model results in not all phase errors being removed, fast switching at long baselines & self-calibration still typically needed for high dynamic range
- Cannot fix directional issues (phase referencing, antenna position errors)
- Little improvement in dry conditions
- Typically marginal improvement at Bands 8-10

ALMA Memo 624

(from gaincal solutions)

- Being able to phase reference is essential for interferometry at any frequency
- Calibrator-source separation matters, and not just for your overheads

- At larger separations, significant phase RMS
- Uncertainties in the global delay model (manifests as antenna position errors)

Asaki+2016 SPIE 9906

- Being able to phase reference is essential for interferometry at any frequency
- Calibrator-source separation matters, and not just for your overheads
- Phase offset $\Delta \phi = 2\pi v_{obs}/c \Delta b (\Delta \theta_{src-cal})$
 - + $\Delta b \sim 0.2$ (Δz) mm/km (offset of z component of antenna position)
- Nearby calibrators highly desirable for highest frequencies
- Also a consideration for VLA with 36 km baselines
 - c.f. VLA antenna positions measured in X-band where atmosphere far more transparent

Max. Phase Offsets - deg (per 1 km baseline)	Target-to-Calibrator Separation (10x worse at 10 km)			
Band	1(deg)	5(deg)	10(deg)	
8	1.8	9.4	18.8	
9	2.7	13.6	27.2	
10	3.6	17.8	35.6	

- Radio sources fill the sky at cm-wavelengths, but many have steep spectra and are very faint at high frequencies
- Difficult to find nearby calibrators, esp. @ Bands 8-10
- Median (90th pct.) separation angles for a suitable calibrator
 - B8 3.6° (7.8°)
 - B9 -7.5° (13.1°)
 - B10 18.5° (33°)
 - <u>Too Distant on average</u>

Perley&Butler 2017

Phase Correction - Band-to-Band (B2B) Phase Transfer

- Conceptually simple
 - observe calibrator at lower frequency and transfer phase to higher frequency
 - account for phase scaling between bands
- Still need low phase RMS at high frequencies
- Some additional overhead associated with calibration of per-band scaling

National Radio Astronomy NRAO Observatory

Phase Correction - Band-to-Band (B2B) Phase Transfer

- Works very well
 - some reduction S/N from phase transfer
 - Vastly superior when no close calibrator is available
- Some projects were previously infeasible due to lack of a calibrators
- B2B opens up the sky for ALMA's highest frequencies

Requirements for Good Data at High Frequencies

- \checkmark High atmospheric transmission for the band observed
- High dry site, suitable for highest frequency desired
- Dynamic scheduling
 - no choice but to wait for optimal PWV

✓ Stable atmosphere over a long enough time for phase referencing

- High dry site, suitable for highest frequency desired
- Dynamic scheduling
 - cannot wait forever, fast switching and WVRs mitigate

✓ Phase referenced to a point-like phase calibration, close to the target source

• Fast switching +WVRs + Band-to-Band essential for full-sky observing

Practical Considerations

- Absolutely propose to do HF science
- Ask for what you need, not what you think they'll give you
- Be aware of some practical considerations
 - Band 9/10 weather is a minority of the time available
 - Most is available in southern hemisphere winter

Practical Considerations

- Absolutely propose to do HF science
- Ask for what you need, not what you think they'll give you
- Be aware of some practical considerations
- VLA has similar HF challenges for K, Ka, and Q-bands depending time of year
 - Summer daytime has little HF time available
 - Governed by combination of phase RMS, wind, and clouds

A (HF) 🔳 A 📒 B (HF) 🔳 B 📕 C (HF) 🔳 C 🔳 N (HF) 🔳 N 🛥 Availability 🛥 Availability (K) 🗚 Availability (Q)

Practical Considerations

- Absolutely propose to do HF science
- Ask for what you need, not what you think they'll give you
- Be aware of some practical considerations
- VLA has similar HF challenges for K, Ka, and Q-bands depending time of year
 - Summer daytime has little HF time available
 - Governed by combination of phase RMS, wind, and clouds

IF) 🔳 A 📒 B (HF) 📕 B 📕 C (HF) 📕 C 🔳 N (HF) 🔳 N 🛥 Availability 🛥 Availability (K) 🗚 Availability (Q)

Summary

- Good transmission (low opacity) and low phase RMS (frequency-dependent) is absolutely necessary for interferometry
- Water Vapor Radiometers can significantly correct phases, esp. in Bands 3-7
- Phase referencing is essential to calibrate data
- Calibrator observations must be interleaved with target quickly enough to track atmosphere
 - Phase RMS still needs to be low enough to have efficient observing
 - Fast switching means different things at ALMA vs. VLA, at VLA it's 'fast'
- Calibrator separation from target is an important consideration
 - larger separations reduce coherence
- Band-to-band transfer for ALMA Bands 8-10 essential for unlocking more nearby calibrators

Special acknowledgement to Luke Maud, many slides derived from his 2023 lecture.

Epilogue

- After all this effort to get WVRs, switch fast enough, and select close enough calibrators (especially enabled with band to band)
 - Dynamic range is still limited when only using standard calibration
 - ~100:1 for ALMA
 - ~1000:1 for VLA
 - Phase transfer errors and phase variations while on source limit dynamic range
- Self-calibration is needed to achieve highest possible dynamic range
 - However, good standard calibration is a pre-requisite to self-calibration

Epilogue - Self-Calibration

- Uses science target as a model to compute further phase (and amplitude if desired) gains
- Misconceptions:
 - X Only useful if phase is changing more rapidly than calibrator cycle time
 - Untrue, phase transfer is never perfect, self-calibration will always help
 - e.g., antenna position errors, different line of sight, uncertainties in global delay model
 - X 'The resulting image isn't scientifically valid because "you can make an image look like anything you want with self-cal"'
 - Untrue given the number of elements in linked interferometers and redundancy of data
 - Model for selfcal is created from the data, so if reasonable S/N this will not happen
 - X 'If I self-cal, all the position information will be lost'
 - Untrue in most cases where have reasonable S/N and model is created from observed source
 - Only true if starting with a point source model at phase center and not using intrinsic source structure as model (generally VLBI cases)

Epilogue - Self-Calibration

- Best Practices:
 - Ensure there is enough signal-to-noise (S/N) to create a model
 - Be conservative in your iterative approach
 - Cannot make weak, but real emission disappear by not including it in the model
 - Can create weak features by including noise or artifacts in your model
 - Read <u>Brogan+2018</u>
- Self-calibration has typically been done manually with interactive clean
- At high frequencies, generally fewer sources
 - Direction Dependent calibration typically not necessary (c.f. Adv. Calibration talk by Heywood)

Epiloque - Self-Calibration

- Typical workflow:
 - Create initial image cleaned to 3σ to assess peak S/N and RMS, determine if selfcal possibly useful
 - Start selfcal loop
 - create shallowly cleaned image (*tclean*), only bright, rock-solid emission
 - back up flags (give unique names; *flagmanager*)
 - run *gaincal* for appropriate solution interval (
 - start long, ~EB length, and shorten to scan, subscan, ... integration
 - run *applycal*
 - reimage to same threshold as pre-selfcal image, see if there is improvement
 - if yes, repeat, shorenting solint, clean deeper
 - if no, back out solutions to previously successful interval
 - Some helpful tops for *gaincal*
 - combine='spw' use all spws together (need to use applycal spwmap)
 - gaintype='T' combine orthogonal polarizations into single solution
 - experiment with preapply/non-preapply previous solution intervals

Self-calibration Example: ALMA 2018.1.01089.S - Band 7

- Overall ~10x improvement from original image!
 - RMS ~ 0.163 mJy/bm
 - Peak ~ 181 mJy/bm
 - S/N ~ 1110
- RMS is still ~3x theoretical sensitivity,
 = dynamic range limit

Selfcal Summary cont'd

- Automated self calibration is now a reality for continuum data (Tobin & Sheehan in prep.)
 - Standalone tools developed by John Tobin and Patrick Sheehan
 - Stable version, supporting single-pointing, mosaics, long-baseline observations:
 - <u>https://github.com/jjtobin/auto_selfcal</u>
 - Development version, supporting same as above, refactored code, wide-band/High S/N improvements
 - <u>https://github.com/psheehan/auto_selfcal</u>
- CASA-integrated pipeline version (based on stable version 1.00 (Oct. 2023)
 - <u>https://science.nrao.edu/srdp/self-calibration</u>
 - <u>https://casa.nrao.edu/download/distro/casa-pipeline/release/linux/casa-6.5.4-9-pipeline-2023.1.0.125-py3</u> <u>.8.tar.xz</u>
 - Also available via ALMA reimaging service within NRAO archive (<u>https://data.nrao.edu</u>)

