

The Next Generation Very Large Array

Viviana Rosero

With some slides contributed by Chris Carilli and Eric Murphy

SIW 05.21.24

ngvla.nrao.edu

A transformative new facility that will replace the VLA and VLBA to tackle a broad range of science questions.

ngVLA Concept:

10x the sensitivity of the VLA/ALMA

10x higher resolution than the VLA/ALMA

1.2 - 116 GHz Frequency Coverage

244 x 18m + 19 x 6m offset Gregorian Antennas

- Centered at VLA site, extending over USA & MX
- Fixed antenna locations; 4 TP antennas

Astro2020 identified the ngVLA as a high-priority large, ground-based facility whose construction should begin this decade.

Bridging SKA & ALMA Scientifically

Thermal Imaging on mas Scales at $\lambda \sim 0.3$ cm to 3cm

New Parameter Space for the mid century

Sensitivity

Complementary suite of arrays from meter to submm wavelengths

- > 120GHz: ALMA 2030 superb for chemistry, dust, fine structure lines
- 1.0 116GHz: ngVLA superb for terrestrial planet formation, dense gas history, black holes
- < 15 GHz: SKA superb for pulsars, reionization, HI + continuum imaging

National Radio Astronomy Observatory

ngVLA Key Science Goals (ngVLA memo #19) The science cases are a representation of the full range of science capabilities

- 1. Unveiling the Formation of Solar System Analogues on Terrestrial Scales
- 2. Probing the Initial Conditions for Planetary Systems and Life with Astrochemistry
- 3. Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time
- 4. Using Pulsars in the Galactic Center as Fundamental Tests of Gravity
- 5. Understanding the Formation and Evolution of Stellar and Supermassive BH's in the Era of Multi-Messenger Astronomy

SIW 05.21.24

Observatorv

KSG2: Probing the Initial Conditions for Planetary Systems and Life with Astrochemistry

The ngVLA can detect complex pre-biotic molecules and provide the chemical initial conditions in forming solar systems and individual planets

KSG3: Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time

Black Holes of Known Mass

Cool Gas in distant Galaxies: history of the formation of stars in the Universe

Credit: Caitlin Casey

 $\theta \approx 0.3''$

θ ≈ 0.3″

5 kpc

 $\theta \approx 0.5''$

KSG4: Using Pulsars in the Galactic Center as Fundamental Tests of Gravity

Top-notch capabilities to identify radio counterparts to transient sources

Black Holes of Known Mass

Discovering pulsars around Sgr A* to test GR

Credit: R. Wharton

KSG5: Understanding the Formation and Evolution of Stellar and Supermassive BH's in the Era of Multi-Messenger Astronomy

Search for BHs across all masses including binary systems

SIW 05.21.24

X-Ray Studies

GW150914

Capture Technical Specifications

Technical requirements are based on science goals

- Frequency range: antenna accuracy, receivers, site
- Field of view: antenna size
- Sensitivity: total collecting area (antenna size and number), receiver quality, bandwidth
- Resolution: maximum baseline length, frequency
- Dynamic range: number of antennas, calibration style
- Polarization: feeds, receiver, antenna
- Spectral resolution: correlator capabilities

Ingvla ngVLA Configuration

Subsets

a tolad

Subarrays

Compromise to deliver good brightness temperature sensitivity and high angular resolution imaging

Non-reconfigurable array designed to deliver high sensitivity over a range of resolutions

Configuration (Rev. D)

Long Antenna Sites						
Qty	Location	Notes				
3	Puerto Rico	Arecibo Site				
3	Immokalee, FL	UF IFAS Site				
3	Kauai, HI	Kokee Park Obs.				
3	Hawaii, HI	Not MK Site				
3	Hancock, NH	VLBA Site				
3	Green Bank, WV	GBO				
3	Brewster, WA	VLBA Site				
3	High Park, WY	New Site				
3	North Liberty, IA	VLBA site				
3	Owens Valley, CA	VLBA site				

13 200

NRAO Observatory

2 OD

Main Antenna Development

- Advantages: high aperture efficiency and low spillover temperature
- Feed Low: Maintenance requirements favor a receiver feed arm on the bottom of the reflector.
- Mount and Drive concept: Chosen for life-cycle cost.

Key Specifications	_
18m Aperture	Offset Gregorian
Shaped Optics	3° Slew & Settle in 7 sec
Surface: 160 µm rms	Reference pointing: 3" rms

SIW 05.21.24

mtex | antenna technology

Performance Estimates and Metrics

National Radio Astronomy Observatory

SIW 05.21.24

Band #	f _∟ GHz	f _M GHz	f _H GHz	f _H : f _L	Max BW GHz	rms 1hr uJy	Resolution mas
1	1.2	2.35	3.5	2.91	2.7	0.24	11.96
2	3.5	7.90	12.3	3.51	8	0.14	3.58
3	12.3	16.4	20.5	1.67	8	0.16	1.71
4	20.5	27.3	34.0	1.66	14	0.17	1.03
5	30.5	40.5	50.5	1.66	20	0.21	0.69
6	70.0	93.0	116	1.66	20	0.40	0.30

4 20.5 27.3 34.0 1.66 14 0. 5 30.5 40.5 50.5 1.66 20 0. 6 70.0 93.0 116 1.66 20 0. Estimated Sensitivity vs Frequency

ngVLA Main+Long

For naturally weighted images. Takes into account maximum continuum bandwidth, receiver temperature, aperture efficiency, atmospheric conditions and spillover.

National Radio Astronomy Observatory

SIW 05.21.24

next generation Exposure Calculator Tool (*ngECT*)

	× +	https://ngect.nrao.edu/ ↓ ↓ ↓ ↓ ↓ ↓				
o ngvla	exposure calculator tool					
input type time rms			Documentation Helpdesk Fee	dback		
Array Configuration	main+lba v		RMS Noise	0.24 uJy / beam		
Configuration Revision	RevD ~		RMS Brightness (Temp)	368.31 K		
Polarization Setup	⊖Single ⊙Dual		Synthesized Beam Size	11.96 marcsec		
Representative Frequency	2.35	GHz v	Number of Antennas	244		
Use Full Bandwidth			Receiver Band	BAND 1		
Beam Weighting	⊙Natural ○Taper		Maximum Instantaneous Bandwidth	2.30 GHz		
Elevation	(not selectable, see tooltip)	degree ~	Digital Samplers	Not Selectable		
Precipitable Water Vapor	(not selectable, see tooltip) ~		Field of View	24.85 arcmin		
Time On Source	0d 01h 00m 00s		Aperture Efficiency	0.83		
			Effective Area	51405.01 m2		
			System Temperature	17.07 K		
	Sector Street	1 A. JE	Confusion Level	Not Selectable		

Version 1.0.0

The Next Generation Very Large Array (ngVLA) is a development project of the National Radio Astronomy Observatory (NRAO). NRAO is a facility of the National Science Foundation (NSF) operated under cooperative agreement by Associated Universities, Inc.

SIW 05.21.24

National Radio Astronomy Observatory

Predict how your source will look with different interferometer options

- The set up: array configuration, frequency, timing
- The source model: e.g., a real or theoretical image
- Add desired amount of noise: real vs scaled
- Account for calibration effects: amplitude, phase, pointing errors

https://casaguides.nrao.edu/index.php/Simulating_ngVLA_Data-CASA5.4.1

Study the expected performance of the ngVLA

- Change in sensitivity as a function of spatial scale
- Response of the array for specific subarrays
- Image fidelity

Taperability ngVLA rms/rms_{NA} at 30 GHz

- Predicting change in sensitivity as a function of spatial scale
- η_w inefficiency factor to account for change in sensitivity due to the use of image weights
- Allow to achieve desired resolution with a relatively small penalty in sensitivity

ngVLA Natural PSF

SIW 05.21.24

Simulated Resolution and PS. 100 Ref

- Scientific cases may need beam 'sculpting'
- Combinations of robust and taper allow for more 'Gaussian' beam at the expense of sensitivity

Finding an optimum compromise between sensitivity and PSF quality

Astronomy Observatory

Selecting Subarrays: alternative for beam sculpting

Subarrays that 'naturally' produce a more Gaussian PSF will require less extreme imaging weights and therefore will incur a less severe sensitivity penalty.

National Radio

Observatorv

- Each subarray is efficient over a narrow resolution range
- For some 'low resolution' projects: observation time is about the same if we include all antennas using uv-taper vs a subarray

Correctness of the reconstruction for ngVLA > 98%

Successful Community Activities and International Engagement Broad Participation Largely Dominated by Early Career Astronomers

http://go.nrao.edu/ngVLA18

http://go.nrao.edu/ngVLA19

http://go.nrao.edu/ngVLA22

- Annual Science Meetings
- Short Talk Series
- Community Studies
- AAS Special Sessions

http://go.nrao.edu/ngVLASKA

SIW 05.21.24

Project Timeline

2019	202	1	2024	202	28	2031	2037
ngVLA Submissio to Astro2	on 020	Su Pro NS	Prototype Delive to VLA Site bmit ngVLA C oposal to GF/MREFC	omple	ngVLA Construction -	 Initiate ngVLA Early Science VLA capabilities) 	Achieve Full Science Operations

Astro2020 Recommendation Published

The ngVLA will be a powerful and versatile instrument for the next generation of radio astronomers

It is designed to meet the needs of many different key science goals across Galactic and extragalactic astronomy

- Community engagement continues (e.g., through science meetings, community studies, and science and technical advisory councils).
- Project management and systems engineering execution on-going.
- Development of ngVLA conceptual design packet well underway
- International and industrial partnerships on-going.
- We will have an Antenna on the plains of San Agustin late 2024!
- All made possible by strong community and NSF support!

Next Generation Very Large Array

National Radio Astronomy Observatory

ngvla.nrao.edu