Imaging and Deconvolution

Joshua Marvil, NRAO

20th Synthesis Imaging Workshop 16 May 2024

Key Concepts

Visibility – a measurement of one Fourier component of the sky brightness distribution.

Gridding – combine all the measured visibilities onto a UV grid

Imaging – take the inverse Fourier transform of the gridded visibilities

Point spread function – an image artifact due to incomplete UV sampling

Deconvolution – the removal of the PSF from the image; 'cleaning'

An interferometer directly measures components of the Fourier transform of the intensity distribution

After several simplifying assumptions, we can relate our measurements to the sky brightness:

$$V_{\nu}(u,v) = \iint I_{\nu}(l,m)e^{-2\pi i(ul+vm)} dl dm$$

which can be directly inverted as:

lew Mexico Te

The University of New Mexic

$$I_
u(l,m) = \iint V_
u(u,v) e^{2\pi i (ul+vm)} \, du \, dv$$

(Figure from Taylor, Carilli, & Perley)

The (weak) *reciprocity* theorem:

New Mexico Te

The University of New Mexic

- Maxwell's equations are valid when time is reversed
- a system can be treated either as a receiver or a transmitter

5

If f(x) is real, F(s) is Hermitian: $f(x) = f^*(-x)$

The sky is Real, so our Visibilities are Hermitian: → conjugate visibilities

6

Earth rotation synthesis: a baseline and its conjugate trace out elliptical arcs through the uv plane over time, based on its Earth-centric coordinates X_{λ} , Y_{λ} , Z_{λ} , the source's declination δ , and the range of hour angles H observed

semi-major axis
$$\sqrt{X_{\lambda}^2 + Y_{\lambda}^2}$$

semi-minor axis $\sin \delta_0 \sqrt{X_{\lambda}^2 + Y_{\lambda}^2}$

displacement along $\boldsymbol{v} = Z_{\lambda} \cos \delta_0$

Synthesized aperture

Synthesized beam

8

Table of visibilities

Essential columns:

- **b** in wavelengths or meters
- calibrated V in Janskys = 10^{-26} Wm⁻²Hz⁻¹
- frequency, phase-tracking center

Other columns:

- data weight, flags
- timestamps, intervals
- antenna & receiver IDs

	b (u, v, w)	V (x+iy)	direction	frequency	
SWC					
ny ra					
y, ma					
man					

Ancillary tables: antenna pointing, weather, system calibration

Imaging with the Fourier transform

Performance considerations for M visibilities, NxN image size:

- Direct Fourier Transform: O(M*N²)
- Discrete Fourier Transform: O(N⁴)
- Fast Fourier Transform: $O(N^2 \log_2 N)$

require regular grid

Also image plane gridding and other advanced solutions

Practical to think first about the image grid:

- predict your angular resolution from diffraction:
- choose an image cell size Δl that oversamples θ_{syn} by a factor of 4~5
- choose an image size MxN (pixels) based on your desired field of view (FOV)
- FOV will be $M \Delta l \times N \Delta m$
- typically want $\Delta l = \Delta m$, M=N

 $\theta_{\rm syn} \approx \frac{\lambda}{b_{max}} (radians)$

UV grid properties will be determined from the image grid

- the number of UV grid cells (pixels) will be the same as what was chosen for the image size, MxN
- the UV cell size will be inversely proportional to the image FOV:

 $\Delta u = 1/(\mathsf{M} \Delta l)$ $\Delta v = 1/(\mathsf{N} \Delta m)$

Visibilities are averaged in the correlator and written out as discrete samples

The correlator integration times are often 1 -10 seconds

Measured visibilities will have values of **u** and **v** that do not align with grid cells, but the FFT requires a grid with regular spacing

The most basic gridding process is called *nearest neighbor*

Move each visibility to the center of the closest UV cell

If there is more than one visibility per cell then take the weighted average, using the **data weights** → cell averaging

Keep track of the sum of weights in each UV cell using a separate grid → gridded weights

We can improve the gridding process through **convolutional resampling**

Each visibility is convolved by a *gridding kernel* that distributes the visibility across multiple cells

We can oversample the kernel to reduce interpolation errors

Specific kernels can address other issues including:

- aliasing
- w-term
- mosaicking

The effect of the kernel can be divided out in the image plane

First Image of the Visibilities

The following equation requires that we know V(u, v) at all values of u, v

$$I_{\nu}(l,m) = \iint V_{\nu}(u,v) e^{2\pi i (ul+vm)} \, du \, dv$$

but we know that our UV coverage is incomplete. So we add a new sampling function term S(u, v)

$$I^D_{\nu}(l,m) = \iint V_{\nu}(u,v)S(u,v)e^{2\pi i(ul+vm)} du dv$$

where

$$S(u,v) = \sum_{k=1}^{M} \delta(u - u_k, v - v_k)$$
 M: # mea

M: # of visibility measurements

First Image of the Visibilities

from the multiplication property of the Fourier transform, we can equate

$$I_{\nu}^{D}(l,m) = \iint V_{\nu}(u,v) S(u,v) e^{2\pi i (ul+vm)} \, du \, dv$$

with

$$I_{\nu}^{D}(l,m) = \mathcal{F}^{-1}[V_{\nu}(u,v)] * \mathcal{F}^{-1}[S_{\nu}(u,v)]$$
$$= I_{\nu}(l,m) * B_{\nu}(l,m)$$

we call $I^{D}(l,m)$ the **dirty image** and B(l,m) the **dirty beam**

Reversing this convolution to recover I(l,m) is called **deconvolution**

First Image of the Visibilities

Example dirty image resulting from the convolution of the sky model with the dirty beam. The dirty beam is also called the **point spread function**.

$$I^D_{\nu}(l,m) = I_{\nu}(l,m) * B(l,m)$$

(Figure by U. Rao)

The University of New Mexic

The Point Spread Function (PSF)

The **PSF** is computed from the iFFT of the *gridded weights*. We define the '*clean beam*' as a Gaussian fit to the central peak of the PSF.

Properties of the PSF can be adjusted through manipulation of these weights, at the expense of image sensitivity:

natural weighting: no adjustments; optimal averaging

uniform weighting: constant weight per cell

super-uniform weighting: constant weight density

robust (Briggs) weighting: in between uniform and natural

(outer) UV taper: weight decreases with increasing UV-distance

The Point Spread Function (PSF)

There is a formal, linear solution to the general problem of deconvolution, called the *principal solution*

$$I^{sky}(l,m) = F^{-1} \left[\frac{F[I^{obs}(l,m)]}{F[I^{PSF}(l,m)]} \right]$$

The principal solution is equivalent to the uniformly weighted dirty image

Linear deconvolution can not fill in the unmeasured UV cells

The FT of these zero-weight cells treats them as having zero value

The FT of zero-weight cells treats them as having zero value, leading to spatial filtering

UV max due to the longest baseline \rightarrow resolution limit, low-pass filter

UV min due to b_{min} = D_{antenna}
→ largest angular scale (LAS)
→ high-pass filter

Missing data in between samples: spatial frequencies that are missing from the dirty image

 \rightarrow PSF structure

ew Mexico Te

(Figure adapted from Thompson, Moran, & Swenson)

Deconvolution results can be improved with non-linear methods, e.g.

- Maximum Entropy
- Non-negative Least Squares
- Bayesian Inference
- CLEAN

These methods work by creating a model that is a good fit to the sampled visibilities. The FT of these models is not required to be zero at the location of unmeasured cells.

The final image is created from the **model image** without using any FTs. Therefore, only the residuals (data-model), which are hopefully noise-like with no remaining signal, are convolved by the dirty beam.

Simulated VLA example of 3 point sources

dirty image

residual

linear deconvolution

restored

model

20th Synthesis Imaging Workshop – Imaging

The most basic CLEAN algorithm has the following phases: Use the iFT to create the PSF and dirty image

Run the following loop until some stopping threshold is met:

Find the brightest peak P in the dirty image

Measure the position of the peak (x_p, y_p)

Shift the PSF to (x_p, y_p) , multiply the PSF by loop gain γ times

P, and subtract this from the dirty image

Add a point source with flux γP to the model at (x_p, y_p)

Smooth the model by a Gaussian *clean beam* having size ~ PSF

Add the *residual image* to the smoothed model

Simulated example from the Australian Telescope Compact Array

Model: 5 point sources and 1 Gaussian

Clean iterations:

1,5,10,20,50,100,200,500,1000

Dirty image

Residua

Variations of the CLEAN algorithm:

Major cycles: gridding, FTs, UV-subtraction

- Hogbom: only one cycle, large PSF
- Clark: many cycles, using the gridded data, PSF patch
- Cotton-Schwab: many cycles, using the measured data, PSF patch

Minor cycles: PSF subtraction, model building

- Hogbom: only point sources
- Multi-scale: point and a set of fixed paraboloids
- Adaptive Scale Pixel (ASP): point and a set of variable Gaussians

constrain the location of model components with *masks*

New Mexico Teo

The University of New Mexic

New Mexico Teo

The University of New Mexic

New Mexico Tec

The University of New Mexico

Summary

Visibility – a measurement of one Fourier component of the sky brightness distribution.

Dirty image – the inverse transform of the measured visibilities. Typically created by evaluating the visibilities on a regular grid, then using the Fast Fourier Transform.

Point spread function – what every point source looks like in the dirty image; also called the dirty beam. It is the FT of the gridded weights.

Deconvolution – replaces occurrences of the dirty beam in the dirty image by a Gaussian of equivalent size to make a '*cleaned*' image; this works by constructing a sky model in the image domain.

References & Credits

- Interferometry and Synthesis in Radio Astronomy (Thompson, Moran, & Swenson)
- Synthesis Imaging in Radio Astronomy II (Editors: Taylor, Carilli, & Perley)
- Essential Radio Astronomy (Condon & Ransom)
- Tutorials, telescope observing guides, software documentation
- Imaging lectures from previous workshops

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

