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Overview
goals
• gain intuition about interferometric imaging
• understand the need for deconvolution 

topics
• get comfortable with Fourier Transforms
• review visibility concept and (u,v) plane sampling
• formal description of imaging
• imaging in practice: FFT, gridding, weighting schemes
• deconvolution and the clean algorithm
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T(l,m)

(u, v) are (E-W, N-S) spatial frequencies [wavelengths]

(l, m) are (E-W, N-S) angles in the tangent plane [radians]

recall

Visibility and Sky Brightness
For small field of view, far field, quasi-monochromatic, incoherent, etc.:

The complex visibility function V(u,v) is the 2D Fourier Transform
of the sky brightness distribution T(l,m)

Jean Baptiste
Joseph Fourier  

1768-1830

[Rick Perley lecture]
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xkcd.com/26/
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Fourier Fundamentals
• acquire comfort with the Fourier domain…

– functions and their Fourier transforms occupy upper and 
lower domains, as if “functions circulated at ground level 
and their transforms in the underworld” (Bracewell 1965)

• Fourier theory states that any well behaved signal can 
be represented as the sum of sinusoids

• the Fourier transform is the mathematical tool that decomposes a 
signal into its sinusoidal components (frequency, amplitude, phase)

• the Fourier transform contains all information of the original signal

Wolfram Mathworld
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Useful Fourier Transform Properties
• addition in one domain is addition in the other

• multiplication in one domain is convolution in the other

• “large” in one domain is “small” in the other

• an offset in one domain is a phase shift in the other

• the Nyquist-Shannon sampling theorem
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Some 2D Fourier Transform Pairs
T(l,m) V(u,v) amplitude 

δ function constant

Gaussian Gaussian

narrow features 
transform into 
wide features 
(and vice-versa)
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elliptical 
Gaussian

elliptical 
Gaussian

Some 2D Fourier Transform Pairs
T(l,m) V(u,v) amplitude 

narrow features 
transform into 
wide features 
(and vice-versa)

sharp edges 
result in many 
high special 
frequencies

uniform disk Bessel
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Amplitude and Phase
T(l,m) V(u,v) amplitude 

amplitude tells “how much” of a certain spatial frequency

phase tells “where” the spatial frequency is located
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A more complicated example

• T(l,m) is real: V(-u,-v) = V*(u,v)   where * = complex conjugate
– get two visibilities for one measurement

• V(u=0,v=0) is the integral of T(l,m)dldm = total flux density

T(l,m) V(u,v) amplitude V(u,v) phase
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compact source

short baseline
wide fringe pattern
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compact source

long baseline
narrow fringe pattern
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compact source

long baseline
narrow fringe pattern
different orientation
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extended source

short baseline
wide fringe pattern
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extended source

long baseline
narrow fringe pattern
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extended source

long baseline
narrow fringe pattern
different orientation
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Aperture Synthesis
basic idea: sample V(u,v) at enough (u,v) points using distributed 
small apertures to synthesize a large aperture of size (umax,vmax)

use more antennas for more samples
• one pair of antennas = one baseline

= two (u,v) samples at one time
• N antennas = N(N-1) samples at one time
• reconfigure physical layout of N antennas for more samples

(as long as source structure doesn’t change with time)

use Earth rotation for more samples
• baseline length/orientation relative to sky change with time

use more wavelengths for more (continuum) samples
• u and v are measured in wavelengths
• “multi-frequency synthesis”: determine structure at a                                    

fiducial wavelength together with change with wavelength

Sir Martin Ryle 
1918-1984

1974 Nobel 
Prize in Physics
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Example of (u,v) Plane Sampling

ALMA 12m antenna 
locations on Aug 8, 2015

[array design: Eric Murphy lecture]
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(u,v) Plane Sampling: more Antennas

source dec -51 deg
λ = 1.3 mm
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(u,v) Plane Sampling: Earth Rotation

source dec -51 deg
λ = 1.3 mm
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(u,v) Plane Sampling: more wavelengths

source dec -51 deg
λ = 1.3 mm
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Implications of (u,v) Plane Sampling
samples of V(u,v) are limited by array and Earth-sky geometry

outer boundary
• no info on smaller scales
• resolution limit

inner boundary
• no info on larger scales
• extended sources invisible

irregular coverage in between
• sampling theorem violated
• information missing
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Inner and Outer (u,v) Boundaries
V(u,v) amplitude V(u,v) phase T(l,m)

V(u,v) amplitude V(u,v) phase T(l,m)
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Calibrated Visibilities… Now what?
analyze V(u,v) samples directly by model fitting [

• good for simple structures, e.g. point sources, symmetric rings

• for a purely statistical description of sky brightness, e.g. fluctuations

• visibilities have well defined noise properties

recover an image from incomplete, noisy samples of V(u,v)
• Fourier transform V(u,v) to create a distorted TD(l,m)

• account for incomplete sampling to create a model of T(l,m) 

• work with the model of T(l,m) to do science 

CASA 
tclean

[Dom Pesce lecture]
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Formal Description of Imaging
• sample Fourier domain at discrete points

• radio astronomy jargon: 
the “dirty image” is the true image convolved with the “dirty beam” 

• Fourier transform sampled visibilities

• apply the convolution theorem

where the Fourier transform of the sampling pattern
is the “point spread function” or the “synthesized beam”
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Example model sky brightness T(l,m)

point 
(1 mJy)

ring 
(35 mJy)

blob 
(18 mJy)
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Dirty Beam and Dirty Image

S(u,v)

=

s(l,m)
“dirty beam”

TD(l,m)
“dirty image”

T(l,m)
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Image Size and Pixel Size
image size
• antenna response modifies the sky brightness distribution

T(l,m) → T(l,m)A(l,m)
where A(l,m) is antenna “primary beam” (fwhm ~ λ/D)

• natural choice for image size is often full extent of primary beam
e.g. ALMA 12 m antennas at 1.3 mm → image size 2 x 27 arcsec

• “primary beam correction”
divide final image by A(l,m) to account for A(l,m) attenuation; 
raises noise away from the center

pixel size
• satisfy sampling theorem for longest baselines:

• in practice, 3 to 5 pixels across dirty beam main lobe to aid deconvolution
e.g. ALMA at 1.3 mm, baselines to 1 km → pixel size < 0.05 arcsec

[Rob Selena lecture]
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• direct computation of Fourier integral by summation is slow, 
generally not practical for modern imaging applications

• FFT = Fast Fourier Transform algorithm

• trace to Gauss’ work in 1805 to interpolate orbit of asteroids Pallas 
and Juno; (re)discovered by Cooley & Tukey 1965

• O(N2logN) vs. O(N4) for N2 image cells

• optimized codes readily available

• FFT requires data on a regularly spaced grid

• but aperture synthesis does not provide V(u,v) samples on a 
regularly spaced grid, so…

“Fourier Transform”
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Gridding is used to resample V(u,v) onto a regular (u,v) grid for FFT 

• conventional approach is to use convolution

• (u,v) cell size ≈ 0.5 x D, where D = antenna diameter

Gridding

• other gridding steps may include
– functions to apply primary beam weighting and offsets (“mosaicking”)
– functions to apply wide-field phase shifts (“W projection”)
– functions to correct for primary beam differences (“A projection”)

[Brian Mason, Urvashi Rao, Preshanth Jagannathan lectures]
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Visibility Weighting Schemes
Introduce weighting function W(u,v) into the gridding process

– W(u,v) modifies the sampling function: S(u,v) → S(u,v)W(u,v)
– changes the dirty beam shape, s(l,m)

Natural weighting: W(u,v) = 1/!2(u,v) where !2  is noise variance 
– best point source sensitivity, lower resolution, more dirty beam structure

Uniform weighting: W(u,v) = 1/"(u,v) where " is density of (u,v) points
– higher noise, higher resolution, less dirty beam structure

Robust (“Briggs”) weighting: W(u,v) combines noise and density
– adjustable parameter allows for continuous variation between 

natural and uniform weighting (in CASA from -2 to 2)
– usually can obtain most of natural weight sensitivity at the same 

time as most of uniform weight resolution (!)

Tapering: apodize (u,v) sampling by a Gaussian function
– lower resolution to improve sensitivity to extended structure
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natural + 1’’ taper
ΔS = 23 μJy

Example Dirty Beams (same data!)

• imaging parameters provide a lot of freedom

• appropriate choice depends on science goal, e.g.
– point source detection: natural weight
– fine detail of strong source: uniform weight
– weak and extended emission: taper

natural
ΔS = 10 μJy

robust=0
ΔS = 16 μJy

uniform
ΔS = 28 μJy



34

Beyond Dirty Images: Deconvolution
• to keep you awake at night:

$ an infinite number of T(l,m) compatible with sampled V(u,v)

Deconvolution
• use non-linear techniques to interpolate/extrapolate V(u,v) samples into    

unsampled regions of (u,v) plane to find a plausible model of T(l,m)

• requires a priori assumptions about T(l,m) to fill unsampled (u,v) plane

• dominant deconvolution algorithm in radio astronomy is “clean”
– a priori assumption: T(l,m) can be represented by point sources
– many variants have been developed for computational efficiency and 

performance on extended structure (Clark, Cotton-Schwab, Multi-Scale, …)

• a very active research area! 
– see EHT paper for some  examples, e.g. regularized likelihood methods
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Classic Hogbom Clean Algorithm
1. find highest peak of residual image
2. subtract scaled dirty beam                            

s(l,m) x “loop gain” from this peak
3. add this point source position and 

amplitude to a clean component list 
and to a model image 

4. if peak of residual image  > 
stopping threshold, then goto 1

s(l,m)

TD(l,m)

create final restored image                          
a) convolve the model image by a         

“clean beam” = an elliptical Gaussian fit 
to the main lobe of the dirty beam

b) add back residual image = noise + 
residual source structure
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Clean Algorithm Parameters
• loop gain

– good results for 0.1 – 0.3  (CASA tclean default = 0.1)
– lower values can help with smooth and extended emission

• finite support (image masks)
– include a priori information about where to 

search for clean components in image
– useful, often essential, for best results
– can be dangerous
– can be an arduous manual process, but 

modern automasking algorithms work well

• stopping threshold
– peak < threshold = multiple of theoretical rms noise, e.g. 3 x rms
– peak < threshold = fraction of dirty map maximum (useful if strong 

sources prevent theoretical rms threshold from being reached)
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Clean Example
initialize

TD(l,m) clean components residual image
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restored image

model

Clean Example: Restored Image

ellipse = restoring 
beam fwhm

final image depends on
• imaging parameters: pixel size, visibility weighting scheme, gridding, …
• deconvolution: algorithm, parameters, iterations, …

s(l,m)

fit Gaussian to s(l,m) convolve model image 
by fitted Gaussian and 
add back residuals

model image
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Clean: Different Weighting Schemes
• restored images emphasize different angular scales from the V(u,v) samples

natural
0.59x0.50

ΔS = 1.0 mJy

natural + 1’’ taper
fwhm 0.93x0.89

ΔS = 23 μJy

natural
fwhm 0.29x0.25

ΔS = 10 μJy

robust=0
fwhm 0.19x0.17

ΔS = 16 μJy

uniform
fwhm 0.17x0.15

ΔS = 28 μJy
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CASA tclean filename extensions
• <imagename>.image

- restored image

• <imagename>.psf
- point spread function (dirty beam)

• <imagename>.model
- model image after deconvolution, i.e. clean components

• <imagename>.residual
- residual image, i.e. after subtracting clean components

• <imagename>.mask
- deconvolution mask

• <imagename>.pb
- primary beam model

• <imagename>.pbcor
- primary beam corrected image
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Measures of Image Quality
dynamic range

• ratio of peak brightness in image to rms
noise in region devoid of emission

• easy way to calculate a lower limit to the 
error in brightness in a non-empty region

e.g. peak 880 and rms 10 μJy/beam                              
→ dynamic range = 88

fidelity

• difference between reconstructed image and the true image

• fidelity = input model/difference = inverse of the relative error
= model * beam / abs (model * beam – reconstructed image)

• generally much lower than implied by dynamic range
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Spectral Lines and Polarization
• discussion so far applies to a single spectral channel of width !"
• science may require many such channels across total bandwidth Δ"

– spectral lines from molecular or atomic transitions
– a significant continuum spectral slope or curvature
– also helpful from a technical perspective

– edit interference, avoid “bandwidth smearing” (radial smearing in 
image from averaging over Δ" that limits useable field of view)

– each channel is imaged (and deconvolved) independently

• science may require full Stokes parameters: I, Q, U, V
– each Stokes parameter imaged (and deconvolved) independently

– then combined to form, e.g. fractional linear polarization √(Q2+U2) /I 

[Ylva Pihlstrom lecture]

[Frank Shinzel lecture]
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Concluding Remarks
• interferometry samples Fourier components of sky brightness

• make images by Fourier transforming the sampled visibilities

• deconvolution attempts to correct for incomplete sampling

• remember
– there are an infinite number of images compatible with the visibilities
– missing (or corrupted) visibilities affect the entire image
– astronomers must make decisions in imaging and deconvolution

• it is fun and worth the trouble  → high resolution images!

many, many issues not covered in this talk, 

see lectures on advanced imaging techniques and references


