Wide-Band and Wide-field Imaging : Concepts

Urvashi Rau

National Radio Astronomy Observatory, Socorro, NM, USA

18th NRAO Synthesis Imaging Workshop

(18-25 May 2022)

Calibration

N antennas N(N-1)/2 antenna-pairs (baselines)

Imaging & Deconvolution

[Ref: Imaging: D. Wilner]

Imaging & Deconvolution

[Ref : Imaging : D. Wilner]

Imaging & Deconvolution

All together....

Self-Calibration

This is only an approximation.....

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

$$V_{ij}^{obs}(v,t) = M_{ij}(v,t) S_{ij}(v,t) \iiint M_{ij}^{s}(l,m,v,t) I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$
Direction
UV sampling
Independent
Gains
UV sampling
function
UV

$$V_{ij}^{obs}(\mathbf{v},t) \approx M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iint I(l,m) e^{2\pi i (ul+vm)} dl dm$$

Primary beams and signal propagation effects...

Wide-Field Imaging : Direction dependent effects

Wide-Field Imaging : Direction dependent effects

Wide-Field Imaging : Direction dependent effects

Wide-Field Imaging : Calibration + Imaging

 Solve for DD gains or PB model params from the data themselves

(direction-dependent calibration)

Primary Beams

 $M_{ij} = P_{ij}$

Primary Beam for baseline ij

Primary Beams

 $M_{ij} = P_{ij}$

Primary Beam for baseline ij

The Sky is multiplied by a Primary Beam, **before** being sampled by each baseline

$$I^{obs}(l,m) = \sum_{ij,t,\nu} I^{PSF}_{ij}(l,m,t,\nu) * \left[P_{ij}(l,m,t,\nu) \cdot I^{sky}(l,m) \right]$$

=> No longer a simple convolution equation

Image-domain Primary Beam Correction (pbcor)

$$V_{ij}^{obs}(v,t) = M_{ij}(v,t) S_{ij}(v,t) \iiint M_{ij}^{s}(l,m,v,t) I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Direction
Dependent
Effects

Assume identical and invariant primary beams.

 $I^{obs} = I^{psf} * \left[P \cdot I^{sky} \right]$

Divide out an average primary beam model after deconvolution

This is approximate

=> Dynamic range limits...

Output Image = $PB \times Sky$

PB-corrected Image : Sky

A-Projection : Apply correction in UV-domain

$$V_{ij}^{obs}(v,t) = M_{ij}(v,t) S_{ij}(v,t) \iiint M_{ij}^{s}(l,m,v,t) I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

Direction
Dependent
Effects

When primary beams change across baseline, time, freq....

$$I_{ij}^{obs} = I_{ij}^{psf} * \left[P_{ij} \cdot I^{sky} \right] \quad \checkmark \quad V_{ij}^{obs} = S_{ij} \cdot \left[A_{ij} * V^{sky} \right]$$

For each visibility, apply $A_{ij}^{-1}pprox$

$$\approx rac{A_{ij}^T}{A_{ij}^T st A_{ij}}$$

Use A_{ij}^{T} as the convolution function during gridding

A-Projection : Apply correction in UV-domain

$$V_{ij}^{obs}(v,t) = \frac{M_{ij}(v,t)}{S_{ij}(v,t)} \int \int \int M_{ij}^{s}(l,m,v,t) I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$
Direction
Dependent
Effects

When primary beams change across baseline, time, freq....

Aperture Illumination for antennas i and j :

$$P_{ij} = E_i \cdot E_j^* = FT[A_i * A_j^*] = FT[A_{ij}]$$

$$A_{ij} = \bigoplus * \bigoplus$$

Ray-traced Model (or) Zernicke fits to holography data

 $I_{ii}^{obs} = I_{ii}^{psf} * \left[P_{ii} \cdot I^{sky} \right] \quad \blacktriangleleft \quad V_{ij}^{obs} = S_{ij} \cdot \left[A_{ij} * V^{sky} \right]$

Use A_{ii}^{T} as the convolution function during gridding

A-Projection : Apply correction in UV-domain

A-Projection : Use aperture illumination functions to construct gridding convolution functions.

Use A_{ij}^T as the convolution function

FT => Primary Beam

Add a phase gradient

FT => Shift the Primary Beam

[Ref : Mosaic : B.Mason \

A-Projection : Use aperture illumination functions to construct gridding convolution functions.

Use A_{ij}^T as the convolution function

FT => Primary Beam

Add a phase gradient

FT => Shift the Primary Beam

Each pointing is gridded with a *different* phase gradient => shift the PB

A-Projection : Use aperture illumination functions to construct gridding convolution functions.

Each pointing is gridded with a *different* phase gradient => shift the PB

Use A_{ij}^{T} as the convolution function

FT => Primary Beam

Add a phase gradient

FT => Shift the Primary Beam

A-Projection : Use aperture illumination functions to construct gridding convolution functions.

Use A_{ij}^{T} as the convolution function

FT => Primary Beam

Add a phase gradient

FT => Shift the Primary Beam

Each pointing is gridded with a *different* phase gradient => shift the PB

[Ref: Mosaic: B.Mason \

Polarization : Full-Mueller A-Projection

- Account for direction-dependent Polarization leakage.

Full-Mueller A-Projection applies the conjugate transpose of the full matrix

$$=$$
 A_{ij}^{T} is a 4x4 matrix application

W-Term effect...

Wide-Field Imaging : Non-coplanar baselines / W-term

$$V_{ij}^{obs}(v,t) = M_{ij}(v,t)S_{ij}(v,t) \iiint M_{ij}^{s}(l,m,v,t)I(l,m,v,t)e^{2\pi i(ul+vm+w(n-1))}dl dm dn$$
W-Term
Tangent
Tangent
Plane
$$\frac{i}{v}, \overline{v}, \overline{$$

For a field-of-view given by the Primary Beam of an antenna of diameter D, at wavelength λ and with a maximum baseline length of B....

W-term : Faceting

$$V_{ij}^{obs}(v,t) = M_{ij}(v,t) S_{ij}(v,t) \iiint M_{ij}^{s}(l,m,v,t) I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

W-Term

- Approximate the celestial sphere by a set of tangent planes (facets) such that 2D geometry is valid per facet

- Image each facet with its own phase reference center and re-project to the tangent plane

Algorithm Variants:

Deconvolve facets separately before reprojecting and stitching

(or)

Image all facets onto the same tangent plane grid and perform a joint deconvolution.

W-term : W-Projection

$$V_{ij}^{obs}(v,t) = \frac{M_{ij}(v,t)}{S_{ij}(v,t)} S_{ij}(v,t) \iiint \frac{M_{ij}^{s}(l,m,v,t)}{M_{ij}^{s}(l,m,v,t)} I(l,m,v,t) e^{2\pi i (ul+vm+\frac{w(n-1)}{v})} dl dm dn$$

For ideal 2D imaging we need to measure E_1 Instead, we measure E_1

 E_1 and E_1 are related by a Fresnel diffraction/propagation kernel.

$$G(u,v,w)=FT\left[e^{2\pi i w \sqrt{1-l^2-m^2}}\right]$$

W-term : W-Projection

$$V_{ij}^{obs}(\mathbf{v},t) = M_{ij}(\mathbf{v},t) S_{ij}(\mathbf{v},t) \iiint M_{ij}^{s}(l,m,\mathbf{v},t) I(l,m,\mathbf{v},t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$$

W-term appears as a convolution in the UV-domain

$$V^{o}(u, v, w) = V(u, v, w = 0) * G(u, v, w)$$

- => Correct it by another convolution with the inverse/conjugate kernel (during the gridding step)
- => Use different kernels for different W values (appropriately quantized)

For ideal 2D imaging we need to measure E_1 Instead, we measure E_1

 E_1 and E_1 are related by a Fresnel diffraction/propagation kernel.

$$G(u,v,w)=FT\left[e^{2\pi i w \sqrt{1-l^2-m^2}}\right]$$

W-Term

W-Term : Algorithm Comparison

Correcting all Direction Dependent effects together.....

A-W-Projection : Correct multiple Direction Dependent effects together, during gridding

The gridding convolution function (per visibility) is a combination of the following......

Aperture illumination functions (ij, time, freq, pol)

Primary Beams

FT of Fresnel kernels

W-term effects

Prolate Spheroidal

Phase gradient

Mosaic

Anti-Aliasing Filter

Wide-Band Effects.....

Wide-Band Imaging

Frequency Range :	(1 – 2 GHz)	(4 – 8 GHz)	(8 – 12 GHz)
Bandwidth : $v_{max} - v_{min}$	1 GHz	4 GHz	4 GHz
Bandwidth Ratio : v_{max} : v_{min}	2:1	2:1	1.5 : 1
Fractional Bandwidth : $(v_{max} - v_{min})/v_m$	_{id} 66%	66%	40%

- + Imaging sensitivity improves with increased bandwidth
- Frequency dependent effects (sky and instrument) are stronger with increased bandwidth

Multi-Frequency Synthesis

Observed image : $I_v^{obs} = I_v^{sky} * PSF_v$

Multi-Frequency Synthesis

 $V_{ij}^{obs}(v,t) = M_{ij}(v,t) S_{ij}(v,t) \iiint M_{ij}^{s}(l,m,v,t) I(l,m,v,t) e^{2\pi i (ul+vm+w(n-1))} dl dm dn$ UV sampling function 2.0 GHz 1.0 - 2.0 GHz 1.0 GHz 1.5 GHz **Multi-Frequency Synthesis** 8.000 6.00 6.000 6.000 6.000 4,000 4.000 Combine data from multiple 4,000 2.000 2,000 2.000 channels 0 -2,000 - Improve PSF -4,000 -4.000 - Improve SNR -6.000 6.000 -8.000 -6.000 -4.000 -2.000 0 2.000 4.000 6.000 -8.000 -6.000 -4.000 -2.000 D 2.000 4.000 6.000 8.000 -6.000 -4.000 -2.000 0 2.000 4.000 6.000 8.000 8.000 -5.000 -4.000 -2.000 0 2.000 4.000 5.000 8.000

Observed image : $I_{v}^{obs} = I_{v}^{sky} * PSF_{v}$

 $I_{wb}^{obs} = \sum_{v} \left[I_{v}^{sky} * PSF_{v} \right]$

Multi-Frequency Synthesis

Observed image : $I_{y}^{obs} = I_{y}^{sky} * PSF_{y}$

A 0.1

0.01

synchrotron emission high energy electrons

Frequency (GHz)

100

1000

Wide-band Deconvolution

Cube Imaging :

- (1) Reconstruct each chan/spw separately
- (2) Smooth to the lowest available resolution
- (3) Combine to calculate continuum and spectra

Continuum image

(sum of smoothed channel maps)

Wide-band Deconvolution

Cube Imaging :

- (1) Reconstruct each chan/spw separately
- (2) Smooth to the lowest available resolution
- (3) Combine to calculate continuum and spectra

Continuum image

(sum of smoothed channel maps)

Multi-Frequency-Synthesis (MFS) :

Combine data from all frequencies and do a joint reconstruction

Flat-spectrum assumption

Model intensity and spectrum together :

Wide Band + Wide Field : Frequency-dependent Primary Beams

Wide Band + Wide Field : Frequency-dependent Primary Beams

Wide Band Mosaics

Put it all together.....

Calibration

Direction-dependent Self-Cal

Wideband Self-Cal

Direction-dependent Self-Calibration

Model the sky and instrument separately

Parameterize the aperture illumination function

- Solve for pointing offsets
- Solve for ionospheric propagation effects

Algorithms : Pointing Self-Cal (with A-Proj)

Model the sky and instrument together

Joint solutions for gains in multiple directions

- Does not use a known PB model
- Difficult to get accurate source flux
- Good approach for source-subtraction

Algorithms : DD-facets, etc....

How are these algorithms realized in software.....?

Iterative Image Reconstruction

The generalized forward problem $V^{obs} = [A]I^m + n$

The generalized inverse problem $I^m = [A]^{-1} V^{obs}$

L2 data regularization

+ Sky model (multiscale, wideband, timevar)

+ Solver/Optimizer with constraints/biases

Iterative Image Reconstruction

The generalized forward problem $V^{obs} = [A]I^m + n$

The generalized inverse problem $I^m = [A]^{-1} V^{obs}$

L2 data regularization

+ Sky model (multiscale, wideband, timevar) + Solver/Optimizer with constraints/biases

Image Reconstruction

Deconvolution Algorithms

Reverse

Iterative Image Reconstruction

The generalized forward problem $V^{obs} = [A]I^m + n$

The generalized inverse problem $I^m = [A]^{-1} V^{obs}$

L2 data regularization

+ Sky model (multiscale, wideband, timevar)+ Solver/Optimizer with constraints/biases

Image Reconstruction

Deconvolution Algorithms

Sky models

- Delta function
- Gaussians
- Wideband

Algorithms

- Clean (greedy) - Many other compressed sensing ideas

- W-Term
- Mosaic

Compute Cost : Data volume, Image size, N_channels Size of gridding convolution function Deconvolution algorithm Sky brightness (intensity and structure)

Some References....

Primary Beam (A-Proj): Bhatnagar, S., Cornwell, T. J., Golap, K., and Uson, J. M., "Correcting direction-dependent gains in the deconvolution of radio interferometric images," Astron. & Astrophys. 487, 419-429 (Aug. 2008).

Full-pol A-Projection : Tasse, C., van der Tol, S., van Zwieten, J., van Diepen, G., and Bhatnagar, S., "Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR," AAP 553, A105 (May 2013).

Full-pol PB models : Jagannathan, P., Bhatnagar, S., Brisken, W., and Taylor, A. R., "Direction-dependent corrections in polarimetric radio imaging. ii. a-solver methodology: A low-order solver for the a-term of the a-projection algorithm," The Astronomical Journal 155(1), 3 (2018).

Wideband Sky Model : Rau, U. and Cornwell, T. J., "A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry," AAP 532, A71 (Aug. 2011).

W-Term : Cornwell, T. J., Golap, K., and Bhatnagar, S., "The non-coplanar baselines effect in radio interferometry: The w-projection algorithm," IEEE Journal of Selected Topics in Sig. Proc. 2, 647–657 (Oct 2008).

Mosaicing : Sault, R. J., Staveley-Smith, L., and Brouw, W. N., "An approach to interferometric mosaicing.," AAPS 120,375-384 (Dec. 1996).

Pointing Self-Cal : Bhatnagar, S. and Cornwell, T. J., "The pointing self-calibration algorithm for aperture synthesis radio telescopes," The Astronomical Journal 154(5), 197 (2017).

DD-cal + wideband : Tasse, C., Hugo, B., Mirmont, M., Smirnov, O., Atemkeng, M., Bester, L., Hardcastle, M. J., Lakhoo, R., Perkins, S., and Shimwell, T., "Faceting for direction-dependent spectral deconvolution," AAP 611, A87 (Apr. 2018).