

20 15 10 -10 -15 -20 -25 -20 -10 10 20 ø KILO WAVENGTH

Cross correlators

for radio astronomy

Adam Deller May 19, 2022

Why correlators matter to YOU

X

Correlators and interferometry

SWINBURNE UNIVERSITY OF TECHNOLOGY

SWINBURNE UNIVERSITY OF TECHNOLOGY

SWINBURNE UNIVERSITY OF TECHNOLOGY Sky brightness at frequency ν_0

Visibilities (real component shown, unit is $\lambda_0 = c / v_0$)

Monochromatic == problematic

$$V(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{A}(l,m) I(l,m) e^{-2\pi i (ul+vm)} dl dm.$$

- u × l + v × m is supposed be constant, but both u and v depend on frequency
- No truly monochromatic radiation!
- Fortunately, "fairly narrow" band of Δv (quasi-monochromatic) can suffice:
 - Real world viewpoint: different frequency components stay "in phase" as wavefront propagates from one antenna to the next

Monochromatic == problematic

Х

Monochromatic == problematic

$$V(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{A}(l,m) I(l,m) e^{-2\pi i (ul+vm)} dl dm.$$

- u × l + v × m is supposed be constant, but both u and v depend on frequency
- No truly monochromatic radiation!
- Fortunately, "fairly narrow" band of Δv (quasi-monochromatic) can suffice:
 - if $\Delta u \times l \ll 1$ and $\Delta v \times m \ll 1$ then the different frequency components stay in phase and we're ok

- Correlator needs to slice at least this finely May 19 2022, 18th NRAO Synthesis Imaging Workshop

Correlators and Interferometry

Sky brightness at frequency ν_0

Visibilities (real component shown, unit is $\lambda_0 = c / v_0$)

May 19 2022, 18th NRAO Synthesis Imaging Workshop

Correlators and Interferometry

Sky brightness at frequency $v' = v_0 + \delta v$

Visibilities (real component shown, unit is $\lambda' = c / \nu'$)

May 19 2022, 18th NRAO Synthesis Imaging Workshop

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a standard complex correlator:

SWINBURNE UNIVERSITY OF TECHNOLOGY

A "dumb" correlator

 Use many analog filters to make many narrow channels; correlate each one separately with a standard complex correlator:

The output

SWINBURNE UNIVERSITY OF TECHNOLOGY

X

May 19 2022, 18th NRAO Synthesis Imaging Workshop

The output

SWINBURNE UNIVERSITY OF TECHNOLOGY

X

May 19 2022, 18th NRAO Synthesis Imaging Workshop

Making it feasible

 Analog filters are costly & finnicky; this would be expensive and temperamental

SWINBURNE UNIVERSITY OF TECHNOLOGY

Making it feasible

- Analog filters are costly & finnicky; this would be expensive and temperamental
- Fortunately, we can (and do) digitize the signal – meaning we can use a digital substitute: digital filterbank

SWINBURNE UNIVERSITY OF TECHNOLOGY

The "FX" correlator

SWINBURNE UNIVERSITY OF TECHNOLOGY

May 19 2022, 18th NRAO Synthesis Imaging Workshop

The "FX" correlator

May 19 2022, 18th NRAO Synthesis Imaging Workshop

SWINBURNE UNIVERSITY OF TECHNOLOGY Since this architecture consists of a <u>Fourier</u> transform (F) followed by <u>cross</u>-multiplication (X), we dub this the "FX" correlator

Righting the wrongs

SWINBURNE UNIVERSITY OF TECHNOLOGY

Sampling

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies $\geq 1 / (2 \Delta t) Hz$ (*band-limited*)

May 19 2022, 18th NRAO Synthesis Imaging Workshop

Sampling

Х

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies $\geq 1 / (2 \Delta t) Hz$ (*band-limited*)

Sampling

Х

- Nyquist-Shannon sampling theorem:
 - real-valued signal is sampled every Δt sec
 - Original signal can be reconstructed perfectly so long as contains no power at frequencies $\geq 1 / (2 \Delta t) Hz$ (*band-limited*)

Quantization

• When correlation is low (almost always) even very coarse quantization is ok!

Quantization

• When correlation is low (almost always) even very coarse quantization is ok!

Quantization

• When correlation is low (almost always) even very coarse quantization is ok!

Quantization

• When correlation is low (almost always) even very coarse quantization is ok!

Quantization

• When correlation is low (almost always) even very coarse quantization is ok!

until the headroom runs out...

SWINBURNE UNIVERSITY OF TECHNOLOGY

- When correlation is low (almost always) even very coarse quantization is ok!
- Sensitivity loss due to quantisation:
 - 8 bit: 0.1%
 - 4 bit: 1.3%
 - 2 bit: 12%
 - 1 bit: 36%
- Correct visibility amplitudes for this sensitivity loss

Righting the wrongs

SWINBURNE UNIVERSITY OF TECHNOLOGY

• Sampling prevents perfect alignment of datastreams; always a small error

SWINBURNE UNIVERSITY OF TECHNOLOGY

 Sampling prevents perfect alignment of datastreams; always a small error

SWINBURNE UNIVERSITY OF TECHNOLOGY

• Sampling prevents perfect alignment of datastreams; always a small error

SWINBURNE UNIVERSITY OF TECHNOLOGY

 Sampling prevents perfect alignment of datastreams; always a small error

SWINBURNE UNIVERSITY OF TECHNOLOGY

Righting the wrongs

* NE *

OF TECHNOLOGY

May 19 2022, 18th NRAO Synthesis Imaging Workshop

Fringe rotation

Signal at sky frequency ~GHz

Х

Downconversion

Signal at baseband ~0 Hz

Fringe rotation

- Implementation: rotate phase using complex multiplier
- $\Delta \phi = 2\pi v_{lo} \tau_g$ $v_{lo} = local oscillator frequency,$ $<math>\tau_g = applied delay$
- Update rate of $\Delta \phi$ depends on how fast τ_g changes:
 - If τ_g is changing fast, correct every recorded sample individually (before the FFT)
 - For shorter baseline / low frequency instruments, can do post-channelisation or even post-accumulation

Alternate implementation

- We have shown how to build a practical FX correlator, which first Fourier transforms and then multiplies
- Convolution theorem: Multiplication in the frequency domain is equivalent to convolution in the time domain
- It is mathematically equivalent to convolve the two signals in the time domain and then Fourier transform

A realistic XF correlator

A realistic XF correlator

XF vs FX

• Different windowing in time domain gives different spectral response

XF vs FX: which is better?

- Desire for reduced artifacts favours FX
 - Main advantage of XF: can use very efficient low-precision integer multipliers up-front
 - But FX many fewer operations overall, unaffected by trend to higher bit depth
 - FX also: access to frequency domain at short timescale allows neat tricks and higher precision correction of delay effects
 - Modern correlators mostly FX-style, and often have multiple cascaded filter steps (~GHz recorded band chopped into ~100 MGz chunks and correlated separately)

The full package

The full package

Each of these 128 MHz chunks can then be treated by separate FX style correlator in parallel: fringe rotation, channelization, delay compensation, and cross-multiplication

Correlator platforms

SWINBURNE UNIVERSITY OF TECHNOLOGY

Correlators on CPUs

status = vectorFFT_CtoC_cf32(complexunpacked, fftd, pFFTSpecC, fftbuffer); if(status != vecNoErr) csevere << startl << "Error doing the FFT!!!" << endl;</pre>

status = vectorAddProduct_cf32(vis1, vis2, &(scratchspace->threadcrosscorrs[resul

SWINBURNE UNIVERSITY OF TECHNOLOGY

Correlators on CPUs

- Many positive points:
 - Can implement in "normal" code (e.g., C++); maintainable, many skilled coders
 - Development effort transferrable across generations of hardware
 - Incremental development is trivial
 - Natively good at floating point (good for FX), no cost to do high precision
- One major disadvantage:
 - CPUs not optimised for correlation; big system like ngEHT would take many CPUs.

OF TECHNOLOGY

Correlators on CPUs

The Very Long Baseline Array, 10 stations The European VLBI Network, ~30 stations

The Long Baseline Array, Australia, ~6 stations

Correlators on GPUs

Like CPUs, GPUs are mounted on a standard motherboard

Correlators on GPUs

- Advantages:
 - More powerful and more efficient than CPUs
 - Also good at floating point
- Disadvantages:
 - Writing code is more difficult (GPUs are more specialized, less flexible: need to carefully manage data transfers)
 - Fewer expert GPU programmers available
 - Transfer-ability of code across hardware generations harder (capabilities change faster, need new code to use)

The Low Frequency Array (LOFAR), 76 stations

> GMRT, India, 30 stations

Now underway: adding GPU acceleration to "general purpose" software correlators

Correlators on FPGAs

SWINBURNE UNIVERSITY OF TECHNOLOGY

Correlators on FPGAs

- Advantages:
 - More efficient than CPUs or GPUs, particularly for integer multiplication – big power savings
- Disadvantages:
 - Programming is harder again (especially debugging), yet fewer experts
 - Transfer-ability across hardware generations even more limited
 - Synchronous (clocked) system, less robust to perturbations c.f. CPUs/GPUs

Correlators on FPGAs

MeerKAT, 64 dishes

Correlators on ASICs

SWINBURNE UNIVERSITY OF TECHNOLOGY

As with FPGAs, ASICs are mounted on boards

Correlators on ASICs

- Advantages:
 - Highest possible efficiency, low per-unit cost
- Disadvantages:
 - Highest development cost (time and manufacturing setup)
 - Specialized knowledge required
 - Can't be changed / very difficult to upgrade during lifetime

Correlators on ASICs

The Atacama Large Millimetre Array, Chile

The Very Large Array, New Mexico

May 19 2022, 18th NRAO Synthesis Imaging Workshop

Correlator platform overview

SWINBURNE UNIVERSITY OF TECHNOLOGY

The end

OF TECHNOLOGY

May 19 2022, 18th NRAO Synthesis Imaging Workshop