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Overview
goals
• gain intuition about interferometric imaging
• understand the need for deconvolution 
topics
• Review of Fourier fundamentals
• Aperture synthesis and (u,v) plane sampling
• FFT and Gridding
• Visibility weighting schemes
• Deconvolution 
• clean and maximum entropy algorithms
• Measures of image quality
• Spectral Line Considerations
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Fourier Fundamentals
• Fourier theory states that any well behaved signal can be 

represented as the sum of sinusoids

• the Fourier transform is the mathematical tool that decomposes a 
signal into its sinusoidal components

Jean Baptiste
Joseph Fourier  

1768-1830

signal 4 sinusoids sum

• the Fourier transform contains all information of the original signal



The Fourier Domain
• acquire comfort with the Fourier domain…

• in older texts, functions and their Fourier transforms 
occupy upper and lower domains, as if “functions 
circulated at ground level and their transforms in the 
underworld” (Bracewell 1965)

• a few properties of the Fourier transform
An addition in one domain is an addition in the other

A multiplication in one domain is a convolution in the other

Scaling: large in one domain is small in the other

An offset in one domain is a phase shift in the other



Visibilities
• each V(u,v) is a complex quantity

• expressed as (real, imaginary) or (amplitude, phase)

T(l,m) V(u,v) amplitude V(u,v) phase

each V(u,v) contains information everywhere in the image T(l,m)



Some 2D Fourier Transform Pairs
T(l,m) V(u,v) amplitude

δ function constant

Gaussian Gaussian

narrow features transform into wide features (and vice-versa)

elliptical
Gaussian

elliptical
Gaussian



Some 2D Fourier Transform Pairs
T(l,m) V(u,v) amplitude

anything sharp in one domain generally oscillates (“rings”) in the other

uniform 
disk

Bessel
function



Response of an Interferometer

• V(u=0,v=0) is the integral of T(l,m)dldm = total flux density

• T(l,m) is real: V(-u,-v) = V*(u,v)   where * = complex conjugate
• get two visibilities for one measurement

• short baseline: wide fringe pattern, low resolution
• flux from extended sources adds up

• long baseline: narrow fringe pattern, high resolution
• flux from extended source averages out → low V(u,v)

V(u,v), the complex visibility function, is the 2D Fourier transform of 
T(l,m) the sky brightness distribution (for an incoherent source, small 
field of view, far field, quasi-monochromatic, etc.) 
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compact source

short baseline
wide fringe pattern
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compact source

long baseline
narrow fringe pattern
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compact source

long baseline
narrow fringe pattern
different orientation
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extended source

short baseline
wide fringe pattern
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extended source

long baseline
narrow fringe pattern
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extended source

long baseline
narrow fringe pattern
different orientation



Aperture Synthesis
basic idea: sample V(u,v) at enough (u,v) points using distributed small 
apertures to synthesize a large aperture of size (umax,vmax)

use more antennas for more samples
• one pair of antennas = one baseline

= two (u,v) samples at one time
• N antennas = N(N-1) samples at one time
• reconfigure physical layout of N antennas for more

(as long as source structure doesn’t change with time)

use Earth rotation for more samples
• baseline length/orientation relative to sky change with time

use more wavelengths for more samples
• baselines stretch with increasing wavelength
• “multi-frequency synthesis”  for continuum imaging:                                            

determine structure at some fiducial wavelength                                                 
and the change with wavelength, e.g. Taylor expansion

Sir Martin Ryle 
1918-1984

1974 Nobel 
Prize in Physics



Aperture Synthesis Telescopes for 
Wavelengths less than 3 mm

ALMA
50x12m + 12x7m + 4x12m

IRAM NOEMA
10(®12) x 15m

SMA
8x6m



Example SMA (u,v) Plane Sampling

SMA antenna locations on 
October 23, 2009

! = 345 GHz

source at dec = + 22 deg



Example SMA (u,v) Plane Sampling
2 antennas, 1 x 30s sample



Example SMA (u,v) Plane Sampling
2 antennas, 1 x 30s sample

u

v

-v

-u



Example SMA (u,v) Plane Sampling
3 antennas, 1 x 30s sample



Example SMA (u,v) Plane Sampling
4 antennas, 1 x 30s sample



Example SMA (u,v) Plane Sampling
5 antennas, 1 x 30s sample



Example SMA (u,v) Plane Sampling
6 antennas, 1 x 30s sample



Example SMA (u,v) Plane Sampling
7 antennas, 1 x 30s sample



Example SMA (u,v) Plane Sampling
7 antennas, 10 x 30s samples



Example SMA (u,v) Plane Sampling
7 antennas, 1 hour



Example SMA (u,v) Plane Sampling
7 antennas, 3 hours



Example SMA (u,v) Plane Sampling
7 antennas, 7 hours



SMA Multi-frequency Synthesis

for continuum

“multi-frequency synthesis”

e.g. SWARM 32 GHz

(8 GHz x 2 SB x 2 Pol)

→ (u,v) samples spread radially



Example SMA (u,v) Plane Sampling
COM configuration of 7 SMA antennas, ! = 345 GHz, dec = + 22 deg



Example SMA (u,v) Plane Sampling
EXT configuration of 7 SMA antennas, ! = 345 GHz, dec = + 22 deg



Example SMA (u,v) Plane Sampling
VEX configuration of 6 SMA antennas, ! = 345 GHz, dec = + 22 deg



Implications of (u,v) Plane Sampling
samples of V(u,v) are limited by array and Earth-sky geometry

outer boundary
• no info on smaller scales
• resolution limit

inner boundary
• no info on larger scales
• extended sources invisible

irregular coverage in between
• sampling theorem violated
• information missing



Inner and Outer (u,v) Boundaries
V(u,v) amplitude V(u,v) phase T(l,m)

V(u,v) amplitude V(u,v) phase T(l,m)



Calibrated Visibilities… Now what?
analyze V(u,v) samples directly by model fitting

• good for simple structures, e.g. point sources, symmetric rings

• for a purely statistical description of sky brightness, e.g. fluctuations

• visibilities have well defined noise properties

use incomplete, noisy samples of V(u,v) to make an image
• Fourier transform to create a distorted version of T(l,m)
• account for incomplete sampling to build up a model of T(l,m)
• work with the model of T(l,m) to do science

some software packages and key tasks for imaging and deconvolution
• CASA tclean
• miriad invert,clean,restore
• AIPS imagr
• GILDAS uvmap,clean



Formal Description of Imaging
• sample Fourier domain at discrete points

• radio astronomy jargon: 
the “dirty image” is the true image convolved with the “dirty beam” 

• Fourier transform sampled visibility function

• apply the convolution theorem

where the Fourier transform of the sampling pattern

is the “point spread function” or “synthesized beam”



Example model sky brightness T(l,m)

Jy
/p

ix
el

disk
+ 

central source

compact blob
(0.25x disk flux)



Dirty Beam and Dirty Image

S(u,v) s(l,m)
“dirty beam”

T(l,m)TD(l,m)
“dirty image”

=



Field of View
• antenna response A(l,m) is not 

uniform across the sky
• “primary beam” fwhm ~ λ/D
• response beyond primary beam 

usually not important for SMA 
observations

• antenna response A(l,m) modifies 
the sky brightness distribution
• T(l,m) → T(l,m)A(l,m)
• can correct with division by    

A(l,m) in the image plane
• larger fields of view require 

multiple pointings of the array 
antennas = mosaicking 

A(l,m)

SMA 6 m
345 GHz

D

T(l,m)

ALMA 12 m
690 GHz



Fast Fourier Transform (FFT) is used to compute the Fourier integral

• Direct computation by simple summation is slow
• must compute sin and cos functions directly for prescribed 

combinations of visibilities: O(N4) for N2 image cells
• can be managed computationally for modest values of N 
• but generally not practical for most modern imaging applications

• FFT algorithm 
• much faster than simple summation: O(N2logN)
• but FFT speed gain does not come for free

• FFT requires data on a regularly spaced grid… and aperture synthesis 
does not provide V(u,v) samples on a regularly spaced grid

• also must pay attention to aliasing effects due to periodic form

Fast Fourier Transform



Gridding is used to resample V(u,v) onto a regular (u,v) grid to use FFT 

• conventional approach is to use convolution

• (u,v) cell size ≈ 0.5 x D, where D = antenna diameter

Gridding

• prolate spheroidal functions are popular “gridding convolution functions”
• compact in (u,v) plane: minimize smoothing, allow efficient gridding
• drops to near zero at image edges, suppresses aliasing

• other gridding steps may include

functions that apply primary beam weighting and offsets (“mosaicking”)

functions that apply wide-field phase shifts (“W projection”)

functions that correct for primary beam differences (“A projection”)



Image Size and Pixel Size
image size

• natural choice is often full primary beam A(l,m)

• e.g. SMA at 870 μm, 6 m antennas → image size 2 x 35 arcsec

• if there are strong sources in A(l,m) sidelobes, then the FFT will alias 
them into the image → make larger image (or image outlier fields)

pixel size

• satisfy Nyquist-Shannon sampling theorem for longest baselines

• in practice, use 3 to 5 pixels across dirty beam main lobe to aid 
deconvolution process

• e.g. SMA at 870 μm, baselines to 500 m → pixel size < 0.1 arcsec



Visibility Weighting Schemes
• We can change the angular response of the interferometer by adding 

additional samples of V(u,v); this requires additional observing time

• Another way is to introduce a weighting function, W(u,v), into the 
visibility gridding process
• W(u,v) modifies the sampling function: S(u,v)→ S(u,v)W(u,v)
• changes the dirty beam shape

• W(u,v) can be used to bring out features on different angular scales 
from the same samples of V(u,v)



Natural Weighting
W(u,v) = 1/!2 in occupied cells (where ! is noise)

• advantages
• maximize point source sensitivity
• lowest rms in image

• disadvantages
• usually many short baselines          
→ lower angular resolution

• many sample density variations     
→ more structure in dirty beam 

Gaussian fit to central core

0.59x0.50 arcsec



Uniform Weighting
W(u,v) inversely proportional to local density of samples;
weight for occupied cell = constant

• advantages
• fills (u,v) plane more uniformly     
→ less structure in dirty beam

• more weight to long baselines      
→ higher angular resolution

• disadvantages
• down weights some data                   
→ higher rms noise

• can be trouble with sparse (u,v)
coverage since cells with few 
samples have same weight as 
cells with many

Gaussian fit to central core

0.35x0.30 arcsec



Robust (“Briggs”) Weighting
variant on uniform weighting that avoids giving too much 
weight to cells with low natural weight
• software implementations differ
• e.g. 

SN is cell natural weight
Sthresh is a threshold parameter

• advantages
• parameter for continuous variation 

between best point source sensitivity 
and highest angular resolution

• usually can obtain most of natural 
weight sensitivity at the same time as  
most of uniform weight resolution (!)

Gaussian fit to central core

0.40x0.34 arcsec



Tapering
apodize (u,v) sampling by a Gaussian function

t is an adjustable tapering parameter

• like convolving image by a Gaussian
• advantages

• less weight to long baselines
→ lower angular resolution that

can improve sensitivity to     
extended structure

• disadvantages
• higher noise per beam
• limits to usefulness as more and 

more data are down weighted

Gaussian fit to central core

1.5x1.5 arcsec

(natural weight + taper)



Weighting Schemes and Noise
• natural: equal weight to all visibilities → lowest noise 

• uniform: equal weight for filled (u,v) cells → higher noise

• robust: continuous variation between natural and uniform

• taper: lower resolution but improved brightness temperature sensitivity 

natural
0.59x0.50

ΔS = 1.0 mJy

uniform
0.35x0.30

ΔS = 2.1 mJy

robust=0
0.40x0.34

ΔS = 1.3 mJy

natural + taper
1.5x1.5

ΔS = 1.4 mJy

robust=0 + taper
0.59x0.50

ΔS = 1.2 mJy



Visibility Weighting Scheme Summary
• imaging parameters provide a lot of freedom

• appropriate choices depend on science goals

natural robust uniform

lower angular resolution

best point source sensitivity

worse sidelobe structure

highest angular resolution

worse point source sensitivity

better sidelobe structure

+ tapering to
improve sensitivity to extended emission,
reduce dirty beam sidelobe structure,
match resolution from different observations,
… and other applications



Beyond the Dirty Image
• to keep you awake at night…

• $ an infinite number of T(l,m) compatible with sampled V(u,v)
• also noise → undetected and corrupted structure in T(l.m)

Deconvolution
use non-linear techniques to interpolate/extrapolate V(u,v) samples into    
unsampled regions of (u,v) plane to find a plausible model of T(l,m)

• there is no unique prescription to extract an optimum model of T(l,m)

• requires a priori assumptions about T(l,m) to pick a plausible “invisible” 
distributions that fill the unsampled parts of (u,v) plane

• key assumption: real sky does not look like dirty beam
• not plausible: symmetric spokes, rings, negative regions, …



Deconvolution in Radio Astronomy
Two most common deconvolution algorithms

• clean (Högbom, J.A 1974, A&AS, 15, 417)
• a priori assumption: T(l,m) can be represented by point sources
• variants to improve computational efficiency, performance on 

extended structure

• maximum entropy (Gull, S.F. & Daniell, G.J 1978, Nature, 272, 686)
• special case of forward modeling that minimizes an objective 

function that includes the data and a regularization term 
(“regularized maximum likelihood” methods)

• a priori assumption for max entropy: T(l,m) is smooth and positive
• vast literature about the deep meaning of entropy (Bayes theorem)

A very active research area! (see, e.g. EHT M87 imaging paper)



Clean Algorithm
• original version by Högbom is purely image based

0.     make dirty image and dirty beam (2x larger than the dirty image)
1. find peak of dirty image
2. subtract dirty beam centered at peak location, scaled by peak value 

and a loop gain factor (typically ~ 0.1) to make residual dirty image
3. add subtracted peak to sky model (clean component list or image)
4. if residual dirty image peak  > stopping criterion, then goto step 1.

• Clark clean
• use small patch of beam to improve speed, subtract clean 

components from gridded visibilities at once using FFT

• Cotton-Schwab clean
• like Clark clean, but subtract clean components from ungridded

visibilities  and repeat entire image process to create residuals
• avoids worst pixelization effects



Clean Algorithm Parameters
• stopping criterion

• peak < threshold = multiple of theoretical rms noise
• peak < threshold = fraction of dirty map maximum (useful if strong 

sources prevent a sensible noise threshold from being reached)
• maximum number of clean components reached (no justification)

• loop gain parameter
• values ~ 0.1 - 0.3 typically give good results
• lower values can help with recovering smoother structures

• finite support
• easy to include a priori information about where to search for clean 

components in the dirty map (image “masks” or clean “boxes”)
• useful, often essential for best results, but potentially dangerous
• can be an arduous manual process; automatic algorithms OK



Clean: The Restored Image
• last step is to create a final “restored” image

• make model image with all point source clean components
• convolve point source model image with a “clean beam”, an elliptical 

Gaussian fit to the main lobe of the dirty beam
• add back residual dirty image with noise and structure below threshold

• the “restored” image is an estimate of the true sky brightness T(l,m)

• units of the “restored” image are (mostly) Jy per clean beam area       

= intensity, or brightness temperature

• Schwarz, U.J. 1978, A&A, 65, 345 proves that clean is statistically 
equivalent to a least squares fit of sine functions in the case of no noise



Clean Example
initialize

TD(l,m) 0 clean components residual map



TD(l,m)

Clean Example

30 clean components residual map



TD(l,m)

Clean Example

100 clean components residual map



TD(l,m)

Clean Example

300 clean components residual map



TD(l,m)

Clean Example

585 clean components residual map

threshold reached



TD(l,m)

Clean Example: Restored Image

585 clean components restored image

ellipse = restoring beam fwhm

final image depends on
• imaging parameters: pixel size, visibility weighting scheme, gridding, …)
• deconvolution: algorithm, iterations, stopping criterion, …)



Clean: Different Weighting Schemes
• emphasize different angular scales from the (u,v) data in the image

natural
0.59x0.50

ΔS = 1.0 mJy

uniform
0.35x0.30

ΔS = 2.1 mJy

robust=0
0.40x0.34

ΔS = 1.3 mJy

robust=0 + taper
1.5x1.5

ΔS = 1.4 mJy



Tune Imaging Parameters to Science
• example: SMA 870 μm images of protoplanetary disk dust continuum 

emission with resolved inner cavities (Andrews et al. 2009, ApJ, 700, 1502)

50
0 

AU



Scale Sensitive Methods
• standard clean often works poorly on very extended structure

• and many point source components needed (slow)

• adjacent pixels in image are not independent
• oversampled resolution limit
• intrinsic source size: an extended source covering 1000 pixels might be 

better characterized by a few parameters than by 1000 parameters, e.g. 6 
parameters for a Gaussian 

• scale sensitive deconvolution algorithms employ fewer degrees of 
freedom in solution to model plausible sky brightness distributions

• e.g. multi-scale clean
• make a collection of dirty images at different resolutions via convolution 

with input “scales” (e.g. 0,3,10,30 pixels)
• find peak across all scales, remove fraction of peak at that scale from all 

dirty images, add corresponding blob to model, iterate..



Maximum Entropy Algorithm
• find the least biased image that agrees with V(u,v) samples

• mathematically, minimize

where H is the image “entropy”

! is a Lagrange multiplier 

"2 is a measure of agreement with the data 

and M is the “default image”  

• can be solved using numerical techniques based on conjugate gradients,

a fast (N logN) solver introduced by Cornwell & Evans (1983)

requires 
positivity



Maximum Entropy Algorithm
• in the absence of information in V(u,v), returns the default image

• easy to include a priori information using the “default image” construct
• If nothing known, then a flat default image is a good choice 
• a single dish image, if available, might make a good default image

• straightforward to generalize χ2 to combine different observations

• alternative measures of entropy available
• replace log with cosh for “emptiness” (does not require positivity)

• relatively fast on large images

• does not use direct information about dirty beam shape
• can have trouble dealing with sidelobes of strong point sources

• effective angular resolution in image is signal-to-noise dependent

• for SMA, often more difficult to drive than clean



TD(l,m)

Maximum Entropy Example
maximum entropy

model

ellipse = restoring beam fwhm

maximum entropy
restored image



Measures of Image Quality
dynamic range

• ratio of peak brightness in image to rms
noise in region devoid of emission

• easy way to calculate a lower limit to the 
error in brightness in a non-empty region

e.g. peak 88 and rms 1.0 mJy/beam                              

→ dynamic range = 88

fidelity

• difference between any reconstructed image and the correct image

• fidelity = input model/difference = inverse of the relative error

= model * beam / abs (model * beam – reconstructed image)

• generally much lower than implied by dynamic range



Invisible Large Scale Structure
• inevitable central hole in (u,v) plane coverage

• extended structure may be missed, attenuated, or distorted

• to estimate if the lack of short baselines is a problem for science
• simulate the observations using a model of the source
• check simple expressions for a Gaussian or uniform disk

• Q: by what factor is the central brightness reduced as a function of source 
size due to missing short spacings for a Gaussian with fwhm !1/2 ?

Homework Problem

• A:  a Gaussian source central brightness is reduced 50% when

where Bmin is the shortest baseline and " is the frequency

(see derivation in appendix of Wilner & Welch 1994, ApJ, 427, 898)



natural weight

TD(l,m)

Missing Short Baselines Example

extended blob
(10x disk flux)

>75 kλ natural weight



Spectral Line Considerations: Science
• most of discussion applies to a single spectral channel of width !"
• science may require many such channels across total bandwidth Δ"
• emission/absorption lines from molecular or atomic transitions

• a significant continuum spectral slope or curvature



Spectral Line Considerations: Technical
• technical reasons to divide Δ! into many channels

• avoid “bandwidth smearing”

average over Δ! results in radial smearing in image plane

• also, edit out narrow band interference 

→ constraint on field of view:



Concluding Remarks
• interferometry samples Fourier components of sky brightness

• make an image by Fourier transforming sampled visibilities

• deconvolution attempts to correct for incomplete sampling

• remember
• there are an infinite number of images compatible with the visibilities
• missing (or corrupted) visibilities affect the entire image
• astronomers must make decisions in imaging and deconvolution

• it is fun and worth the trouble  → high resolution images!

many, many imaging issues not covered in this talk, see references



END


