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Synopsis
• Calibration I

– Why do we have to calibrate?
– Review Idealistic formalism à Realistic practice
– Fundamental Calibration Principles

• Practical Calibration Considerations
• Baseline-based vs.  Antenna-based Calibration
• Solving for calibration

– An example Visibility dataset
• Flagging

• Calibration II
– Scalar Calibration Example
– Generalizations & Specializations

• Full Polarization
• A Dictionary of Calibration Effects

– Calibration Heuristics and ‘Bootstrapping’
– New Calibration Challenges
– Summary

416th Synthesis Imaging Workshop



Why Calibration?

• Synthesis radio telescopes, though exquisitely well-designed, are not 
perfect (e.g., surface accuracy, receiver noise, polarization purity, gain 
stability, geometric model errors, etc.)

• Need to accommodate deliberate engineering (e.g., frequency down-
conversion, analog/digital electronics, filter bandpass, etc.)

• Hardware or control software occasionally fails or behaves unpredictably
• Scheduling/observation errors sometimes occur (e.g., wrong source 

positions)
• Atmospheric conditions not ideal
• Radio Frequency Interference (RFI)

Determining instrumental and environmental properties (calibration)
is a prerequisite to 

determining radio source properties
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From Idealistic to Realistic
• Formally, we wish to use our interferometer to obtain the visibility 

function:

• ….a Fourier transform which we intend to invert to obtain an image of the 
sky:

– V(u,v) describes the amplitude and phase of 2D sinusoids that add up to 
an image of the sky (a direction-dependent average)
• Amplitude:  “~how much & ~how concentrated?”
• Phase:  “~where?”
• c.f.  Young’s Double-Slit Interference Experiment (1804)

• To develop an intuitive feel for calibration, let’s review:  What are the V(u,v)     
and how do we measure them?
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A Filled Aperture
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• EM wave focusing instruments
• Your eye
• A camera
• A conventional telescope

• Properties
• Gathering power (collecting area)
• Resolution



A Filled Aperture
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A Filled Aperture

16th Synthesis Imaging Workshop 9



A Segmented (filled) Aperture
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• Each segment ‘gathers’ EM field disturbances 
arriving from whole sky (field superposition)

• Parabolic figure redirects the net field and 
concentrates it in the focal plane 

• Diffraction (EM waves!) dictates that each 
segment contributes complex (w/ phase) field 
to whole focal plane (field superposition)

• Power is detected:  mean square of complex field 
sums per pixel:  many cross-products…
• Field disturbances from different directions 

(sources) are independent; no net contribution
• Each surviving cross-product paints a sinusoid 

(a “fringe”) across focal plane, per source, per 
segment pair (baseline)

• Per baseline source distribution sets the “fringe 
visibility” (fringe superposition)

• Global Fringe Superposition localizes direction-
dependent source power at each pixel yielding 
a sensible image 



An Unfilled Aperture
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• Fewer segments, and pairs thereof
• Less total collecting area
• Uglier diffraction pattern

• Still, a sensible, if more modest 
image



An Unfilled Aperture – virtual focus
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• Fewer segments, and pairs thereof 
• Less total collecting area
• Uglier diffraction pattern

• Synthesis Interferometry:
• Cross-products explicitly

formed electronically
• “Focus” is formed by 

computation, through 
correlation and imaging



The Geometry of Interferometry
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d = wλ +uλ tanθ( )cosθ −wλ

= uλ sinθ +wλ cosθ −1( )

d l( ) = uλl +wλ 1− l2 −1( )   (1D) 

 sinθ = l;  cosθ = 1− l2( )

d l,m( ) = uλl + vλm+wλ 1− l2 −m2 −1( )   (2D)  

≈ uλl + vλm        l,m <<1( )

sj = sie
i2πd l,m( )

• Consider direction-dependent arrival 
geometry for E-field disturbance 
reception at two points, i and j, relative 
to the phase center direction

i j

Direction-dependent signals:

(small angles)



What are the V(u,v) that we form?
• Correlate the net E-field disturbances, xi & xj

arriving at spatially separate sensors, i & j
– delay-aligned for the phase-center
– si & sj are the direction-dependent E-

field disturbances 
• Direction integral and product can be 

reversed, because the E-field disturbances 
from different directions don’t correlate 
(***finite bandwidth***) 

• si and sj (for a specific direction) differ only 
by a phase factor given by the arrival 
geometry, d

• <|si|2> is proportional to the brightness 
distribution, I(l,m)
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Vij
obs = xi ⋅ x j
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= si dli dmi ⋅
sky
∫ sj
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sky
∫

Δt

= sis j
* dl dm

sky
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Δt

= si
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= I l,m( )e−i2π ul+vm( ) dl dm
sky
∫



But in reality…
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• Weather
• Realistic Antennas 
• Electronics…
• Digital correlation
• Finite noise
• …and the whole thing is 

moving!
• “Effective” geometry is not 

ideal
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Realistic Visibility
• In practice, we obtain an imperfect visibility measurement per antenna pair:

!"#$%& ', ) = +" , - +#∗ , ∆0
= 1"#!"#0234 ', )

– xi & xj are mutually delay-compensated for the phase center
– Averaging duration is set by the expected timescales for variation of the 

correlation result (~seconds)
• Jij is a generalized operator characterizing the net effect of the observing 

process for antennas i and j on baseline ij, which we must calibrate
– Includes any required scaling to physical units

• Sometimes Jij corrupts the measurement irrevocably, resulting in data that 
must be edited or “flagged”
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Realistic Visibility:  Noise
• Normalized (fractional) visibility (Nyquist):

• Absolute visibility:

– Ti, Tj are the system temperatures (total sampled powers), in whatever 
units the corresponding visibility data are in (K or Jy)

– (The numerator, as measured by the correlator, is the factor by which 
visibilities are typically normalized, e.g.  ALMA)

• Formal Visibility Weights:

!"# = %
&'()

– The fundamental measure of statistical information content
– Uniform for normalized visibilities 2∆,∆-
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Practical Calibration Considerations
• Observatory housekeeping (optimizing default performance)

– Nominal antenna positions, earth orientation and rate, clock(s), frequency 
reference

– Antenna pointing/focus, voltage pattern, gain curve
– Calibrator coordinates, flux densities, polarization properties

• Absolute engineering calibration (dBm, K, volts)?
– Amplitude:  episodic (ALMA) or continuous (EVLA/VLBA) Tsys or switched-

power monitoring to enable calibration to nominal K (or Jy, with antenna 
efficiency information)

– Phase:  Water Vapor Radiometry (ALMA), otherwise practically impossible 
(relative antenna phase)

– Traditionally,  we concentrate instead on ensuring effective instrumental stability
on adequate timescales

• Cross-calibration a better practical choice
– Observe strong astronomical sources near science target against which 

calibration (Jij) can be solved, and interpolate solutions onto target 
observations

– Choose appropriate calibrators; usually point sources because we can easily 
predict their visibilities  (Amp ~ constant,  phase ~ 0)

– Choose appropriate timescales for calibration
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“Absolute” Astronomical Calibrations
• Flux Density Calibration

– Radio astronomy flux density scale set according to several 
“constant” radio sources, and planets/moons

– Use resolved models where appropriate
• Astrometry

– Most calibrators come from astrometric catalogs;  sky coordinate 
accuracy of target images tied to that of the calibrators 

– Beware of resolved and evolving structures, and phase transfer 
biases due to troposphere (especially for  VLBI)

• Polarization
– Usual flux density calibrators also have significant stable linear 

polarization position angle for registration
– Calibrator circular polarization usually assumed zero (?)

• Relative calibration solutions (and dynamic range) insensitive to errors 
in these “scaling” parameters
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Baseline-based Cross-Calibration

• Simplest, most-obvious calibration approach:  measure complex response 
of each baseline on a standard source, and scale science target visibilities 
accordingly
– “Baseline-based” Calibration:

• Only option for single baseline “arrays” 
– historical one-at-a-time visibilities

• Calibration precision same as calibrator visibility sensitivity (on timescale 
of calibration solution).  Improves only with calibrator strength.

• Calibration accuracy sensitive to departures of calibrator from assumed 
structure
– Un-modeled calibrator structure transferred (in inverse) to science target!
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Antenna-based Cross Calibration
• Measured visibilities are formed from a product of antenna-based 

signals.  Can we take advantage of this fact?

!"# = !"!#∗

• This is the fundamental insight that enabled the spectacular success of 
synthesis interferometers over the past 40 years.  
– Ryle (Nobel Prize in 1974 for developing aperture synthesis) very 

skeptical that atmospheric errors could be overcome…
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Distorted Unfilled Apertures

• Each unfilled aperture segment 
(antenna) has its own distinct 
properties that uniformly affect all 
correlations formed with other 
segments
– E.g., unmodelled location and 

electronic path-length errors, 
atmosphere (delay errors)

– Complex “Gain” (scale)

16th Synthesis Imaging Workshop 22



Distorted Unfilled Apertures
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• Each unfilled aperture segment 
(antenna) has its own distinct 
properties that uniformly affect all 
correlations formed with other 
segments
– E.g., unmodelled location and 

electronic path-length errors, 
atmosphere (delay errors)

– Complex “Gain” (scale)
• Explicit formation and fine 

sampling of antenna-pair cross-
products provides a post-
observation—but “pre-focus”—
opportunity to correct errors
– I.e., to calibrate



Aside:  Distorted Filled Apertures:  AO
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• Adaptive optics:  Real-time, active 
correction of effective aperture 
geometry errors
– Reflector figure (gravitational 

deflection, etc.)
– Atmospheric propagation

• HST
– Spherical aberration (constant)
– Real-time “calibration” by 

introducing optical elements 
that correct wavefront before 
reaching the focus (otherwise, 
it was a deconvolution problem)

• Eyeglasses!
– Calibration on an ~annual 

timescale…



Aside:  Distorted Filled Apertures:  AO
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• Adaptive optics:  Real-time, active 
correction of effective aperture 
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– Reflector figure (gravitational 

deflection, etc.)
– Atmospheric propagation
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– Real-time “calibration” by 

introducing optical elements 
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reaching the focus (otherwise, 
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Antenna-based Cross Calibration
• The net time-dependent E-field signal sampled by antenna i, xi(t), is a 

combination of the desired signal, si(t,l,m), corrupted by a factor Ji(t,l,m) 
and integrated over the sky (l,m), and diluted by noise, ni(t):

• xi(t) is sampled (complex) voltage provided to the correlator input
• Ji(t,l,m) is the product of a series of effects encountered by the 

incoming signal
• Ji(t,l,m) is an antenna-based (one index) complex number 

– Amplitude:  “gain” (also units)
– Phase:  geometry/directional distortion

• Usually, |ni|2 >> |si’|2 (i.e., noise power dominates)
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Correlation of Realistic Signals
• The correlation of two 

realistic (aligned for a 
specific direction) signals 
from different antennas:

• Noise correlations have 
zero expectation—even if           
|ni|2>> |si|2

– the correlation process 
isolates desired signals 
amidst zero-mean noise

• Same analysis as before, 
except we carry Ji, Jj terms
– Ji’s time- and frequency-

dependence (and field-
of-view) set the required 
timescale and frequency 
resolution
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xi ⋅ x j
*

Δt
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*

Δt
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*

Δt
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*

Δt
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*

Δt
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*

Δt
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*

Δt

= Jisi dli dmi ⋅
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∫ J j

*sj
* dlj dmj

sky
∫

Δt

= JiJ j
*sis j

* dl dm
sky
∫

Δt

= JiJ j
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The Scalar Measurement Equation

• First, isolate non-direction-dependent effects, and factor them from the integral:

• Next, we recognize that over small fields of view, it is often possible to assume 
Jsky=1.0, and we have a relationship between ideal and observed Visibilities:

• Standard calibration of most existing arrays reduces to solving this last equation for 
the Ji, assuming a visibility model Vij

mod for a calibrator 
• Visibilities corrupted by difference of antenna-based phases, and product of antenna-

based amplitudes
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Vij
obs = JiJ j

*I(l,m)e−i2π uijl+vijm( ) dl dm
sky
∫

= Ji
visJ j

vis*( ) Ji
skyJ j

sky*( ) I(l,m)e−i2π uijl+vijm( ) dl dm
sky
∫

= JiJ j
* I(l,m)e−i2π uijl+vijm( ) dl dm
sky
∫

Vij
obs = JiJ j

*Vij
true
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Aside:  Auto-correlations and Single Dishes
• The auto-correlation of a signal from a single antenna:

• This is an integrated (sky) power measurement plus non-zero-mean 
noise, i.e., the Tsys

• Desired signal not simply isolated from noise
• Noise usually dominates the power
• Scalar calibration (c.f. single-baseline calibration)

• Single dish radio astronomy calibration strategies rely on switching 
(differencing) schemes to isolate desired signal from the noise
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Solving for the  Ji
• Observe point-like calibrator for which we know true visibilities, and…
• We can write:

• …and define chi-squared:

• …and minimize chi-squared w.r.t. each Ji*
!"#
!$%∗

= 0 , yielding:

*+ = ,
∑./+ 0+.123*.0+.415∗6+.

∑./+ *.
7 0+.415

76+.

= ,∑89%
:%8
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>8
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D = *.
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• (Requires iteration to solve the ensemble)
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Solving for Ji (cont)
• Formal errors:

• For a ~uniform array (~same sensitivity on all baselines, ~same calibration 
magnitude on all antennas) and point-like calibrator:

• Calibration error decreases with increasing calibrator strength and square-
root of Nant (c.f. baseline-based calibration).

• Other properties of the antenna-based solution:
– Minimal degrees of freedom (Nant factors, Nant(Nant-1)/2 measurements)
– Net calibration for a baseline involves a phase difference, so absolute

directional information is lost (Nant-1 phases)
– Closure…
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Antenna-based Calibration and Closure
• Success of synthesis telescopes relies on antenna-based calibration

– Fundamentally, any information that can be factored into antenna-based terms, 
could be antenna-based effects, and not true source visibility information

– For Nant > 3, non-trivial source visibility information cannot be entirely 
obliterated by any antenna-based calibration

• Observables independent of antenna-based errors: closure
– Closure Phase (3 baselines)
– Closure Amplitude (4 baselines)

• Baseline-based calibration formally violates closure!
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Closure Phase

!"#$%& = ("#$%&)
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-./
= 0"0#∗ !"#2345
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= 6"6#("#2345)
" *+,
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• Form total phase around three baselines:

>"#$%&+ >#?$%&+ >?"$%& = >"#2345 + A" − A# + >#?2345 + A# − A? + >?"2345 + A? − A"
= >"#2345+ >#?2345+ >?"2345

– Closure phase is independent of antenna-based phase errors
– ⁄DEF2 − 1 DEF2 − 2 2 independent closure phases

• Baseline-based calibration formally violates closure!
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Closure Amplitude
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• Form ratios of amplitude products from four baselines:
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– Closure amplitude is independent of antenna-based amplitude errors
– ⁄LMN7 LMN7 − 3 2 independent closure amplitudes

• Baseline-based calibration formally violates closure!
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Reference Antenna
• Since the “antenna-based” phase solution is derived from antenna phase 
differences, we do not measure phase absolutely
– relative astrometry (only as good as assumed calibrator astrometry)

• Phase solutions typically referred to a specific antenna, the refant, which is 
assumed to have constant phase (zero, in both polarizations)
– refant typically near array center
– The refant’s phase variation distributed to all other antennas’ solutions
– Asserts unambiguous phase continuity, for adequate time sampling, 

thereby ensuring reliable interpolation of phase (c.f. arbitrary phase 
offsets between solutions)

– Asserts stable cross-hand phase frame (which must be calibrated)
• Problems:

– A single good refant not always available over whole observation (time, 
frequency), due to flagging, etc.

– Effective cross-hand phase of refant (or over multiple refant changes) 
may not, in fact, be stable…
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Corrected Visibility

• Visibility…

• …and weights!
– calibrate the sigmas!

– Statistical information content becomes baseline-dependent
– Imaging will be a non-trivially-weighted direction-dependent average of 

the visibilities…
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What Is Delivered by a Synthesis Array?
• An enormous list of complex visibilities!  (Enormous!)

– At each timestamp (~1-10s intervals):  N(N-1)/2 baselines
• EVLA:  351 baselines
• VLBA:  45 baselines
• ALMA:  1225+ baselines

– For each baseline:  up to 64 Spectral Windows (“spws”, “subbands” or “IFs”)
– For each spectral window:  tens to thousands of channels (Dn<10 MHz)
– For each channel: 1, 2, or 4 complex correlations (polarizations)

• EVLA or VLBA:  RR or LL or (RR,LL), or (RR,RL,LR,LL)
• ALMA:  XX or YY or (XX,YY) or (XX,XY,YX,YY)

– With each correlation, a weight value and a flag (T/F)
– Meta-info: Coordinates, antenna, field, frequency label info 

• Ntotal = Nt x Nbl x Nspw x Nchan x Ncorr visibilities
– ~few 106 x Nspw x Nchan x Ncorr vis/hour   à10s to 100s of GB per observation
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A Typical Dataset

• Array:
– EVLA D-configuration (Apr 2010)

• Sources:
– Science Target:  3C391, a SNR (7 mosaic pointings) 
– Near-target calibrator: J1822-0938 (~11 deg from target)
– Flux Density calibrator: 3C286
– Instrumental Polarization Calibrator: 3c84

• Signals:
– RR,RL,LR,LL correlations
– One spectral window centered at 4600 MHz, 128 MHz bandwidth, 64 channels
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The Array
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UV-coverages
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3C286 
Flux Density

J1822-0938
Gain Calibrator

3C391
Science Target

3C84
Instr. Poln Calibrator
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The Visibility Data   (source colors)
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The Visibility Data (baseline colors)
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The Visibility Data (baseline colors)
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The Visibility Data (baseline colors)
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A Single Baseline – Amp (source colors)
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A Single Baseline – Phase (source colors)
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A Single Baseline – 2 scans on 3C286
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5 degrees ~ 1mm @ 4.6 GHz
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Single Baseline, Single Integration 
Visibility Spectra (4 correlations)
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Single Baseline, Single Scan
Visibility Spectra (4 correlations)
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Single Baseline, Single Scan (time-averaged)
Visibility Spectra (4 correlations)
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Data Examination and Editing
• After observation, initial data examination and editing very important

– Will observations meet goals for calibration and science requirements?
• What to edit (much of this is now automated):

– Some real-time flagging occurred during observation (antennas off-source, LO 
out-of-lock, etc.).  Any such bad data left over?  (check operator’s logs)

– Any persistently ‘dead’ antennas (check operator’s logs)
– Periods of especially poor weather?  (check operator’s log)
– Any antennas shadowing others?  Edit such data.
– Amplitude and phase should be continuously varying—edit outliers
– Radio Frequency Interference (RFI)?

• Caution:
– Be careful editing noise-dominated data.
– Be conservative: those antennas/timeranges which are obviously bad on 

calibrators are probably (less obviously) bad on weak target sources—edit them
– Distinguish between bad (hopeless) data and poorly-calibrated data.  E.g., some 

antennas may have significantly different amplitude response which may not be 
fatal—it may only need to be calibrated

– Choose (phase) reference antenna wisely (ever-present, stable response)
• Increasing data volumes increasingly demand automated editing algorithms…
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Editing Example
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Editing Example
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Scan transitions/setup
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Editing Example
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Editing Example (before)
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Editing Example (after)
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Synopsis
• Calibration I

– Why do we have to calibrate?
– Review Idealistic formalism à Realistic practice
– Fundamental Calibration Principles

• Practical Calibration Considerations
• Baseline-based vs.  Antenna-based Calibration
• Solving for calibration

– An example Visibility dataset
• Flagging

• Calibration II
– Scalar Calibration Example
– Generalizations & Specializations

• Full Polarization
• A Dictionary of Calibration Effects

– Calibration Heuristics and ‘Bootstrapping’
– New Calibration Challenges
– Summary
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Simple Scalar Calibration Example
• Array:

– EVLA D-configuration (Apr 2010)

• Sources:
– Science Target:  3C391, a SNR (7 mosaic pointings)
– Near-target calibrator: J1822-0938 (~11 deg from target; unknown flux density, 

assumed 1 Jy)
– Flux Density calibrator: 3C286  (7.747 Jy, essentially unresolved)

• Signals (simplified for this example):
– RR correlation only for this illustration (total intensity only)
– One spectral window centered at 4600 MHz, 128 MHz bandwidth
– 64 observed spectral channels averaged with normalized bandpass calibration 

applied (this illustration considers only the time-dependent ‘gain’ calibration)
– (extracted from a continuum polarimetry mosaic observation)
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Views of the Uncalibrated Data
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Views of the Uncalibrated Data
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Views of the Uncalibrated Data
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Uncalibrated Images
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Rationale for Antenna-based Calibration
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The Calibration Process
• Solve (LS) for antenna-based gain factors for each scan on all calibrators 

(Vmod=S for f.d. calibrator; Vmod=1.0 for others) :

!"#$%& = ("(#∗ !"#*$+

• Bootstrap flux density scale by enforcing gain amplitude consistency over 
all calibrators:

("
(" ,- ./0 1"*2,4512554&

= 1.0

• Correct data (interpolate, as needed):

!"#9$: = (";<(#∗;< !"#$%&

6516th Synthesis Imaging Workshop



The Antenna-based Calibration Solution
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• Reference antenna: ea21  (phase = 0)
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ea17

ea12

ea21 (refant)

The Antenna-based Calibration Solution
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Flux Density Bootstrapping

68

• 3C286’s gains have correct scale ~ Jy$%
• Thus, J1822-0938 is 2.32 Jy (not 1.0 Jy, as assumed)

3C286

J1822-0938
(assuming 1.0 Jy)
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Effect of Antenna-based Calibration:  
Phase (before)
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Effect of Antenna-based Calibration
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Calibration Effect on Imaging
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Calibration Effect on Imaging
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Calibration Effect on Imaging
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Calibration Effect on Imaging
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3C391
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• David Wilner’s lectures “Imaging and Deconvolution” (Next!)

16th Synthesis Imaging Workshop

CALIBRATED CALIBRATED



Evaluating Calibration Performance
• Are solutions ~continuous?

– Noise-like solutions are just that—noise (beware:  calibration of pure 
noise generates a spurious point source)

– Discontinuities may indicate instrumental glitches (interpolate with care)
– Any additional editing required?  

• Provisional calibration can make bad data easier to see
– Evidence of unsampled variation?  

• Flag uncalibrateable data
• (Consider faster cadence next time!)

• Are calibrator data fully described by antenna-based effects?
– Phase and amplitude closure errors are the baseline-based residuals
– Are calibrators sufficiently point-like?  If not, self-calibrate:  model 

calibrator visibilities (by imaging, deconvolving and transforming) and re-
solve for calibration; iterate to isolate source structure from calibration 
• Crystal Brogan’s lectures:  “Advanced Calibration” (this afternoon)

• Greg Taylor’s lecture: “Error Recognition” (Tuesday)
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Summary of Scalar Example
• Dominant calibration effects are antenna-based

• Minimizes degrees of freedom
• More precise
• Preserves closure
• Permits higher dynamic range safely!

• Point-like calibrators effective
• Flux density bootstrapping

• Deconvolution necessary (“Imaging”)
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Generalizations and Specializations
• Full-polarization Matrix Formalism
• Calibration Effects Factorization
• Calibration Heuristics and ‘Bootstrapping’
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Full-Polarization Formalism (Matrices!)
• Need dual-polarization basis (p,q) to fully sample the incoming EM wave 

front, where p,q = R,L (circular basis) or p,q = X,Y (linear basis):

• Stokes Parameters: 
I = Total Intensity;  Q,U = Linear Polarization;   V = Circular Polarization

• Devices can be built to sample these circular (R,L) or linear (X,Y) basis 
states in the signal domain (Stokes Vector is defined in “power” domain)

• Some components of Ji involve mixing of basis states, so dual-polarization 
matrix description desirable or even required for proper calibration 
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Full-Polarization Formalism:  Signal Domain
• Substitute:

• The Jones matrix thus corrupts the vector wavefront signal as follows: 
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Full-Polarization Formalism: Correlation - I

• Four correlations are possible from two polarizations.  The coherency 
matrix represents correlation in the matrix formalism:

• Observed visibilities:
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Full-Polarization Formalism: Correlation - II
• And finally, for fun, expand the correlation of corrupted signals:

• UGLY, but we rarely, if ever, need to worry about algebraic detail at 
this level---just let this occur “inside” the matrix formalism, and work 
(think) with the matrix short-hand notation

• Synthesis instrument design driven by minimizing off-diagonal terms  
in Ji
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The Matrix Measurement Equation
• We can now write down the Measurement Equation in matrix notation:

– Ic(l,m) is the 2x2 matrix of Stokes parameter combinations 
corresponding to the coherency matrix of correlations (basis-
dependent)

• Circular basis:  !" = $$ $%
%$ %% = ! + ' ( + )*

( − )* ! − '
• Linear basis:    !" = ,, ,-

-, -- = ! + ( * + )'
* − )' ! − (

• …and consider how the Ji are products of many effects…
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
Vij

obs =
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Ji

Ic (l,m)


J j
*+( )e−i2π uijl+vijm( ) dl dm

sky
∫
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A Dictionary of Calibration Components
• Ji contains many components, in principle:

• F = ionospheric effects
• T = tropospheric effects
• P = parallactic angle
• X = linear polarization position angle
• E = antenna voltage pattern, gaincurve
• D = polarization leakage
• G = electronic gain
• B = bandpass response
• K = geometry
• M, A = baseline-based corrections

• Order of terms ~follows signal path (right to left)
• Each term has matrix form of Ji with terms embodying its particular 

algebra (on- vs. off-diagonal terms, etc.)
• Direction-dependent terms must stay inside FT integral
• ‘Full’ calibration is traditionally a bootstrapping process wherein relevant 

terms (usually a minority of above list) are considered in decreasing order 
of dominance, relying on approximate separability
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Ionospheric Effects, F

• The ionosphere introduces a dispersive path-length offset:
• More important at lower frequencies (<5 GHz)
• Varies more at solar maximum and at sunrise/sunset, when ionosphere is most 

active and variable
• Direction-dependent within wide field-of-view

• The ionosphere is birefringent: Faraday rotation:
• as high as 20 rad/m2 during periods of high solar activity will rotate linear 

polarization position angle by e = 50 degrees at 1.4 GHz
• Varies over the array, and with time as line-of-sight magnetic field and electron 

density vary, violating the usual assumption of stability in position angle calibration

– Frank Schinzel’s lecture:  “Polarization” (Friday)
– Tracy Clark’s lecture:  “Low Frequency Interferometry” (Friday) 
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Tropospheric Effects, T

• The troposphere causes polarization-independent amplitude and phase 
effects due to emission/opacity and refraction, respectively

• Up to 2.3m excess path length at zenith compared to vacuum
• Higher noise contribution, less signal transmission:  Lower SNR
• Most important at n > 15 GHz where water vapor and oxygen absorb/emit, and 

where  path length errors are a larger fraction (or multiple!) of the wavelength
• Zenith-angle-dependent (more troposphere path nearer horizon)
• Clouds, weather = variability in phase and opacity; may vary across array
• Water vapor radiometry (estimate phase from power measurements)
• Phase transfer from low to high frequencies (delay calibration)

• ALMA!
– Crystal Brogan’s lectures:  “Advanced Calibration” (today)
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Parallactic Angle, P

• Changing orientation of sky in telescope’s field of view
• Constant for equatorial telescopes
• Varies for alt-az-mounted telescopes:

• Rotates the position angle of linearly polarized radiation
• Analytically known, and its variation provides leverage for determining 

polarization-dependent effects

• Frank Schinzel’s lecture:  “Polarization” (Friday)
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Linear Polarization Position Angle, X

• Configuration of optics and electronics (and refant) causes a net linear 
polarization position angle offset

• Can be treated as an offset to the parallactic angle, P
• Calibrated by registration with a strongly polarized source with 

known polarization position angle (e.g., flux density calibrators)
• For circular feeds, this is a phase difference between the R and L 

polarizations, which is frequency-dependent (a R-L phase bandpass)
• For linear feeds, this is the orientation of the dipoles (in the frame of 

the telescope) projected onto sky coordinates

• Frank Schinzel’s lecture:  “Polarization” (Friday)
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Antenna Voltage Pattern, E

• Antennas of all designs have direction-dependent gain within field-of-view
• Important when region of interest on sky comparable to or larger than l/D radians
• Important at lower frequencies where radio source surface density is greater and 

wide-field imaging techniques required
• Beam squint:  ER and EL offset, yielding spurious Stokes V polarization
• Sky rotates within field-of-view for alt-az antennas, so off-axis sources move 

through the pattern 
• Direction dependence of polarization leakage (D) may be included in E (off-diagonal 

terms then non-zero)

• Shape and efficiency of the voltage pattern may change with zenith angle:   
‘gain curve’

– Brian Mason’s lecture:  “Mosaicking” (Friday)
– Urvashi Rao Venkata’s lecture:  “Widefield Imaging” (Monday)
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Polarization Leakage, D

• Antenna & polarizer are not ideal, so orthogonal polarizations not 
perfectly isolated

• Well-designed feeds have d ~ a few percent or less
• A geometric property of the optics design, so frequency-dependent
• For R,L systems, total-intensity imaging affected as ~dQ, dU, so only important 

at high dynamic range (Q,U,d each ~few %, typically)
• For R,L systems, linear polarization imaging affected as ~dI, so almost always 

important
• For small arrays (no differential parallactic angle coverage), only relative D 

solution is possible from standard linearized solution, so parallel-hands cannot 
be corrected absolutely (closure errors)

• Best calibrator: Strong, point-like, observed over large range of 
parallactic angle (to separate source polarization from D)

• Frank Schinzel’s lecture:  “Polarization” (Friday)
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“Electronic” Gain, G

• Catch-all for most amplitude and phase effects introduced by antenna 
electronics and other generic effects

• Most commonly treated calibration component
• Dominates other effects for most standard observations
• Includes scaling from engineering (correlation coefficient) to radio astronomy 

units (Jy), by scaling solution amplitudes according to observations of a flux 
density calibrator

• Includes any internal system monitoring, like EVLA switched power calibration
• Often also includes tropospheric and (on-axis) ionospheric effects which are 

typically difficult to separate uniquely from the electronic response
• Excludes frequency dependent effects (see B)

• Best calibrator: strong, point-like, near science target; observed often 
enough to track expected variations
– Also observe a flux density standard
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Bandpass Response, B

• G-like component describing frequency-dependence of antenna 
electronics, etc.

• Filters used to select frequency passband not square
• Optical and electronic reflections introduce ripples across band
• Often assumed time-independent, but not necessarily so
• Typically (but not necessarily) normalized
• ALMA Tsys is a “bandpass” (freq-dependent calibration to K)

• Best calibrator: strong, point-like; observed long enough to get 
sufficient per-channel SNR, and often enough to track variations

• Ylva Pihlstrom’s lecture: “Spectral Line Data Analysis” (Friday)
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Geometry, K
• Must get geometry right for Synthesis Fourier Transform relation to work in 

real time
• Antenna positions (geodesy)
• Source directions (time-dependent in topocenter!) (astrometry)
• Clocks 
• Electronic path-lengths introduce delays (polarization, spw differences)
• Longer baselines generally have larger relative geometry errors, especially if clocks are 

independent (VLBI)
• Importance scales with frequency and bandwidth

• K is a clock- & geometry-parameterized version of G
• All-sky observations used to isolate geometry parameters

– Adam Deller’s lecture: “Very Long Baseline Interferometry” (Friday)
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Non-closing Effects: M, A
• Baseline-based errors which do not factor into antenna-based components

– Digital correlators designed to limit such effects to well-understood and 
uniform (not dependent on baseline) scaling laws (absorbed in f.d. calibration)

– Simple noise (additive)
– Averaging in time and frequency over variation in antenna-based effects and 

visibilities (practical instruments are finite!)
– Instrumental polarization effects in parallel hands (not properly factored)
– Correlated “noise” (e.g., RFI)

• Difficult to distinguish from source structure (visibility) effects
– Geodesy and astrometry observers consider determination of radio source 

structure—a baseline-based effect—as a required calibration if antenna positions 
are to be determined accurately

• Separate factors for each element of the coherency matrix; M multiplies, A adds
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Solving the Measurement Equation
• Formally, solving for any antenna-based visibility calibration component 

is always the same general non-linear fitting problem:

– Generalization of scalar non-linear LS approach
– Observed and Model visibilities are corrected/corrupted by available 

prior calibration solutions/information downstream and upstream of 
the solved-for component, respectively

– Resulting solution used as prior in subsequent solves, as necessary
– Each solution is relative to priors and assumed source model
– Iterate sequences, as needed à generalized self-calibration

• Viability and accuracy of the overall calibration depends on isolation of 
different effects using proper calibration observations, and appropriate 
solving strategies (heuristics)
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Measurement Equation Heuristics
• When considering which effects are relevant to a particular observation, 

and how to sequence calibration determination, it is convenient to express 
the Measurement Equation in a “Heuristic Operator” notation:

Vobs = M B G D E X P T F  Vtrue + A

• Rigorous notation, antenna-basedness, etc., suppressed
• Usually, only a subset of terms are considered, though highest-

dynamic range observations may require more
• An expression of a “Calibration Model”

– Order is important (handled in software)
– Solve for terms in decreasing order of dominance, iterate to isolate
– NB: Non-trivial direction-dependent solutions involve convolutional 

treatment of the visibilities, and is coupled to the imaging and 
deconvolution process---see advanced imaging lectures…)
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Decoupling Calibration Effects
• All calibration terms are a function of prior information!
• Multiplicative gain (G) term will soak up many different effects;  known 

priors should be compensated for explicitly, especially when direction-
dependent differences (e.g., between calibrator and target) will limit the 
accuracy of calibration transfer:
– Zenith angle-dependent atmospheric opacity, phase (T,F)
– Zenith angle-dependent gain curve (E)
– Antenna position errors (K)

• Early calibration solves (e.g., G) are always subject to more subtle, 
uncorrected effects 
– Instrumental polarization (D), which introduces gain calibration errors 

and causes apparent closure errors in parallel-hand correlations
– When possible, iterate and alternate solves to decouple effects…
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Calibration Heuristics – Spectral Line
Total Intensity Spectral Line (K=antenna positions, B=bandpass, G=gain, 

E=gaincurve, T=opacity): 

Vobs = K B G E T Vtrue

1. Preliminary Gain solve on B-calibrator:  
(K’ Vobs) = GB (E T Vmod)

2. Bandpass Solve (using GB) on B-calibrator (then discard GB):  
(K’ Vobs) = B (GB E T Vmod)

3. Time-dependent Gain solve (using inverse of B) on all calibrators:
(B’ K’  Vobs) = G (E T Vmod)

4. Flux Density scaling:
G à Gf (enforce gain consistency)

5. Correct with inverted (primes) solutions:
Vcor = T’ E’ Gf ’ B’ K’  Vobs

6. Image!
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Calibration Heuristics – Polarimetry
Polarimetry (B=bandpass, G=gain, D=instr. poln, X=pos. ang., P=parallactic ang.): 

Vobs = B G D X P Vtrue

1. Preliminary Gain solve on B-calibrator:  
Vobs = GB Vmod

2. Bandpass (B) Solve (using GB) on B-calibrator (then discard GB):  
Vobs = B (GB Vmod)

3. Gain (G) solve (using parallactic angle P,  inverse of B) on calibrators:
(B’  Vobs) = G (PVmod)

4. Instrumental Polarization (D) solve (using P, inverse of G,B) on 
instrumental polarization calibrator:

(G’ B’  Vobs) = D (P Vmod)
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Calibration Heuristics – Polarimetry

5. Polarization position angle solve (using P, inverse of D,G,B) on 
position angle calibrator:

(D’ G’ B’  Vobs) = X (P Vmod)
6. Flux Density scaling:

G à Gf (enforce gain consistency)

7. Correct with inverted solutions:
Vcor = P’ X’ D’ Gf ’ B’  Vobs

8. Image!

• To use external priors, e.g., T (opacity), K (ant. position errors),          E 
(gaincurve), revise step 3 above as:
3. (B’ K’  Vobs) = G (E P T Vmod)
– and carry T, K, and E forward along with G to subsequent steps
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Modern Calibration Challenges
• Gain calibration optimizations

– ‘Delay-aware’ gain (self-) calibration:  Troposphere and Ionosphere introduce time-variable phase effects 
easily parameterized as functions of frequency

– Inter-band gain transfer (high-frequency ALMA)
– Water Vapor Radiometry

• Polarization calibration optimizations
– Frequency-dependent Instrumental Polarization √
– High Dynamic Range (I, Q, U, &V))
– More robust gain refant algorithms
– Routine Full Polarization Treatments

• Voltage pattern for wide fields of view, mosaicking
– Frequency-dependent voltage pattern
– Wide-field accuracy (sidelobes, rotation)
– Instrumental polarization (incl. frequency-dependence)

• RFI mitigation
• Pipelines/Science Ready Data Products (SRDP)

– Generalized Heuristics vs. observational flexibility…
– Modern instruments’ sensitivity to more subtle effects…

• Increasing sensitivity:  Can implied dynamic range be reached by
our calibration and imaging techniques? 
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Summary
• Determining calibration is as important as determining source 

structure—can’t have one without the other
• Data examination and editing an important part of calibration
• Calibration dominated by antenna-based effects

– permits efficient, accurate and scientifically defensible separation 
of calibration from astronomical information (satisfies closure)

• Full calibration formalism algebra-rich, but is modular
• Calibration an iterative process, improving various components in 

turn, as needed
• Point sources are the best calibrators
• Observe calibrators according requirements of calibration 

components
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