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T(x,y

) 

Visibility and Sky Brightness 

• from the van Cittert-Zernike theorem (TMS Ch. 14) 

– the complex visibility V(u,v) is the 2-dimensional              

Fourier Transform  of the sky brightness T(x,y)             

(incoherent source, small field of view, far field…) 

– u,v are E-W and N-S spatial frequencies 

units are wavelengths 

– x,y are E-W and N-S angles in the tangent plane 

units are radians 
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The Fourier Transform 

• Fourier theory states that any well behaved signal 

(including images) can be expressed as the sum of 

sinusoids 

 
Jean Baptiste 

Joseph Fourier  

1768-1830 

signal 4 sinusoids sum 

• the Fourier transform is the mathematical tool that 

decomposes a signal into its sinusoidal components 

• the Fourier transform of a signal contains all of the information 

of the original    
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The Fourier Domain 

• acquire some comfort with the Fourier domain 

– in older texts, functions and their Fourier transforms 

occupy upper and lower domains, as if “functions 

circulated at ground level and their transforms in the 

underworld” (Bracewell 1965) 

 

• a few properties of the Fourier transform 

adding 

scaling 

shifting 

convolution/mulitplication 

Nyquist-Shannon sampling theorem 
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V(u,v) 

amplitude phase 

T(x,y) 

Visibilities 

• each V(u,v) contains information on T(x,y) everywhere, not 

just at a given (x,y) coordinate or within a given subregion 

 

• V(u,v) is a complex quantity 

– visibility expressed as (real, imaginary) or (amplitude, phase) 
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Example 2D Fourier Transform Pairs  

T(x,y) amp{V(u,v)} 

δ function constant 

Gaussian Gaussian 

narrow features transform into wide features (and vice-versa) 

elliptical 

Gaussian 
elliptical 

Gaussian 
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Example 2D Fourier Transform Pairs  

T(x,y) amp{V(u,v)} 

disk Bessel 

sharp edges result in many high spatial frequencies 
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Amplitude and Phase 

• amplitude tells “how much” of a certain spatial frequency 

• phase tells “where” this component is located  

 

 

 

 

 

 

 

T(x,y) V(u,v) 

amplitude phase 
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The Visibility Concept 

• visibility as a function of baseline coordinates (u,v) is the 

Fourier transform of the sky brightness distribution as a 

function of the sky coordinates (x,y) 

 

• V(u=0,v=0) is the integral of T(x,y)dxdy = total flux 

 

• since T(x,y) is real, V(u,v) is Hermitian: V(-u,-v) = V*(u,v) 

– get two visibilities for one measurement 
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Visibility and Sky Brightness 
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Visibility and Sky Brightness 
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Aperture Synthesis Basics 
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• idea: sample V(u,v) at enough baselines to 

synthesize a large aperture of size (umax, vmax) 

- one pair of telescopes = one baseline                          

= one (u,v) sample at a time 

- N telescopes = N(N-1) (u,v) samples at a time 

- use Earth rotation to fill in (u,v) plane with time     

(Sir Martin Ryle 1974 Physics Nobel Prize) 

- reconfigure physical layout of N antennas for more 

- observe at multiple wavelengths simultaneously, if 

source spectrum amenable to simple characterization 

 

 

 

• How many samples are enough? 

 

 

Sir Martin Ryle 

1918-1984 



Examples of (Millimeter Wavelength) 

Aperture Synthesis Telescopes 

JVLA 

ALMA 

SMA 

CARMA 

IRAM PdBI ATCA 
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An Example of (u,v) plane Sampling 

• 2 configurations of 8 SMA antennas, 345 GHz, Dec. -24 dec 
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Imaging: (u,v) plane Sampling 

• in aperture synthesis, samples of V(u,v) are limited by the 

number of telescopes and the Earth-sky geometry 

• outer boundary 

– no information on small scales 

– resolution limit 

• inner hole 

- no information on large scales 

- extended structures invisible 

• irregular coverage between 

inner and outer boundaries 

- sampling theorem violated 

- information missing 
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Inner and Outer (u,v) Boundaries 

V(u,v) 

amplitude phase 

T(x,y) 

V(u,v) 

amplitude phase 

T(x,y) 
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xkcd.com/26/ 
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Imaging: Formal Description 

• sample Fourier domain at discrete points 

 

• the (inverse) Fourier transform is 

 

• the convolution theorem tells us 

 

• where                                      (the point spread function) 

 

 the Fourier transform of the sampled visibilities yields the true 

sky brightness convolved with the point spread function 

jargon: the “dirty image” is the true image convolved with the “dirty beam” 
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Dirty Beam and Dirty Image 
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B(u,v) 

TD(x,y) 
“dirty image” 

b(x,y) 
“dirty beam” 

T(x,y) 



Dirty Beam Shape and N Antennas 

2 Antennas 
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Dirty Beam Shape and N Antennas 

3 Antennas 
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Dirty Beam Shape and N Antennas 

4 Antennas 
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Dirty Beam Shape and N Antennas 

5 Antennas 
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Dirty Beam Shape and N Antennas 

6 Antennas 
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Dirty Beam Shape and N Antennas 

7 Antennas 
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Dirty Beam Shape and N Antennas 

8 Antennas 
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Dirty Beam Shape and N Antennas 

8 Antennas x 6 samples 
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Dirty Beam Shape and N Antennas 

8 Antennas x 30 samples 
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Dirty Beam Shape and N Antennas 

8 Antennas x 60 samples 
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Dirty Beam Shape and N Antennas 

8 Antennas x 120 samples 

31 



Dirty Beam Shape and N Antennas 

8 Antennas x 240 samples 
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Dirty Beam Shape and N Antennas 

8 Antennas x 480 samples 
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Calibrated Visibilities- What Next? 

• analyze V(u,v) samples directly by model fitting 

– best for “simple” structures, e.g. point sources, disks 

• recover an image from the observed incomplete and   

noisy samples of its Fourier transform to analyze  

– Fourier transform V(u,v) samples to get TD(x,y) 

– but difficult to do science on this dirty image 

– deconvolve b(x,y) from TD(x,y) to determine (a model of) T(x,y) 

V(u,v)                                 TD(x,y)                               T(x,y) 
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Some Details of the Dirty Image 
 

• “Fourier transform” 

– Fast Fourier Transform (FFT) algorithm much faster than simple 

Fourier summation, O(NlogN) for 2N x 2N image 

– FFT requires data on a regularly spaced grid 

– aperture synthesis observations do not provide samples of V(u,v)     

on a regularly spaced grid, so… 

• “gridding” is used to resample V(u,v) for FFT 

– customary to use a convolution method 

• visibilities are noisy samples of a smooth function 

• nearby visibilities are not independent 

– use special (“Spheroidal”) functions with nice properties 

• fall off quickly in (u,v) plane: not too much smoothing 

• fall off quickly in image plane: avoid aliasing 
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Telescope Primary Beam 

A(x,y) 

T(x,y) 

SMA  

870 m 
ALMA  

435 m 

• telescope response A(x,y) is not 

uniform across the entire sky 

– main lobe fwhm ~ 1.2 /D,        

“primary beam”  

– limits field of view 

– region beyond primary beam 

sometimes important           

(sidelobes, error beam) 

 

• telescope beam modifies the       

sky brightness distribution  

– T(x,y)  T(x,y)A(x,y) 

– can correct with division by        

A(x,y) in the image plane 

– large sources require multiple 

telescope pointings = mosaicking 

D 
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Pixel Size and Image Size 

• pixel size 

– satisfy sampling theorem for longest baselines 

 

        

 

– in practice, 3 to 5 pixels across main lobe of dirty beam                                 

to aid deconvolution 

– e.g., SMA 870 m, 500 m baselines  600 k   pixels < 0.1 arcsec 

 

• image size 

– natural choice: span the full extent of the primary beam A(x,y) 

– e.g., SMA 870 m, 6 m telescope  2x 35 arcsec 

– if there are bright sources in the sidelobes of A(x,y), then the FFT will 

alias them into the image  make a larger image (or equivalent) 
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Dirty Beam Shape and Weighting 

• introduce weighting function W(u,v) 

 

– W(u,v) modifies sidelobes of dirty 

beam   (W(u,v) also gridded for FFT) 

  

• “natural” weighting 

– W(u,v) = 1/ 2 in (u,v) cells, where 2    
is the noise variance of the data, and 

W(u,v) = 0 everywhere else 

– maximizes the point source sensitivity 

(lowest rms in image) 

– generally gives more weight to short 

baselines (low spatial frequencies), so 

angular resolution is degraded 
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Dirty Beam Shape and Weighting 

•  “uniform” weighting 

– W(u.v) is inversely proportional to 

local density of (u,v) points, so sum      

of weights in a (u,v) cell is a constant      

(zero for the empty cells) 

– fills (u,v) plane more uniformly, so   

dirty beam sidelobes are lower 

– gives more weight to long baselines 

(high spatial frequencies), so angular 

resolution is enhanced 

– downweights data, so degrades point 

source sensitivity 

 

– can be trouble with sparse sampling: 

cells with few data points have same 

weight as cells with many data points 
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•  “robust” (Briggs) weighting 

– variant of “uniform” that avoids giving 

too much weight to (u,v) cells with    

low natural weight 

– software implementations differ 

– example: 

  

     SN is natural weight of cell  

     Sthresh is a threshold 

     high threshold  natural weighting 

     low threshold  uniform weighting 

 

– an adjustable parameter that allows for 

continuous variation between the 

maximum point source sensitivity and 

the highest angular resolution 

 

Dirty Beam Shape and Weighting 
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•  “tapering” 

– apodize (u,v) sampling by a Guassian 

 

 

     t = adjustable tapering parameter               

(usually in units) 

– like smoothing in the image plane 

(convolution by a Gaussian) 

– gives more weight to short baselines, 

degrades angular resolution 

– degrades point source sensitivity but 

can improve sensitivity to extended 

structure sampled by short baselines 

– limits to usefulness 

Dirty Beam Shape and Weighting 
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Weighting and Tapering: Noise 

natural 

0.77x0.62 

 

=1.0 

robust=0 

0.41x0.36 

 

=1.6 

uniform 

0.39x0.31 

 

=3.7 

robust=0 

+ taper 

0.77x0.62 

 

=1.7 
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Weighting and Tapering: Summary 

• imaging parameters provide a lot of freedom 

• appropriate choice depends on science goals 

Robust/Uniform Natural Taper 

Resolution higher medium lower 

Sidelobes lower higher depends 

Point Source 

Sensitivity 

lower maximum lower 

Extended Source 

Sensitivity 

lower medium higher 
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Deconvolution: Beyond the Dirty Image 

• calibration and Fourier transform go from the V(u,v) 

samples to the best possible dirty image, TD(x,y) 

• in general, science requires to deconvolve b(x,y) from 

TD(x,y) to recover (a model of) T(x,y) for analysis 

• information is missing, so be careful (there’s noise, too) 

           

 

 

dirty image                                            “CLEAN” image 

44 



Deconvolution Philosophy 

• to keep you awake at night 

–  an infinite number of T(x,y) compatible with sampled V(u,v),              

i.e. “invisible” distributions R(x,y) where b(x,y)  R(x,y) = 0  

• no data beyond umax,vmax        unresolved structure 

• no data within umin,vmin            limit on largest size scale 

• holes in between                  sidelobes 

– noise  undetected/corrupted structure in T(x,y) 

– no unique prescription for extracting optimum estimate of T(x,y) 

 

• deconvolution   

– uses non-linear techniques effectively to interpolate/extrapolate 

samples of V(u,v) into unsampled regions of the (u,v) plane 

– aims to find a sensible model of T(x,y) compatible with data 

– requires a priori assumptions about T(x,y) to pick plausible “invisible” 

distributions to fill unmeasured parts of the Fourier plane 
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Deconvolution Algorithms 

• Clean: dominant deconvolution algorithm in radio astronomy 

– a priori assumption: T(x,y) is a collection of point sources 

– fit and subtract the synthesized beam iteratively 

– original version by Högbom (1974) purely image based 

– variants developed for higher computational efficiency, model                            

visibility subtraction, to deal with extended structure, …                                  

(Clark, Cotton-Schwab, Steer-Dewdney-Ito, etc.)  

 

• Maximum Entropy: used in some situations 

– a priori assumption: T(x,y) is smooth and positive 

– define “smoothness” via a mathematical expression for entropy, e.g.        

Gull and Skilling 1983, find smoothest image consistent with data 

– vast literature about the deep meaning of entropy as information content 

 

• an active research area, e.g. compressive sensing methods 
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Basic Clean Algorithm 

1. Initialize 

• a residual map to the dirty map 

• a Clean Component list to empty 

 

2. identify highest peak in the         

residual map as a point source 

3. subtract a fraction of this peak from 

the residual map using a scaled (loop 

gain g) dirty beam b(x,y) 

4. add this point source location and 

amplitude to Clean Component list 

5. goto step 2 (an iteration) unless  

stopping criterion reached 

47 

b(x,y) 

TD(x,y) 



Basic Clean Algorithm (cont) 
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• stopping criteria 

– residual map max < multiple of rms (when noise limited) 

– residual map max < fraction of dirty map max (dynamic range limited) 

– max number of Clean Components reached (no justification) 

• loop gain  

– good results for g ~ 0.1 to 0.3 

– lower values can work better for smoother emission, g ~ 0.05 

• easy to include a priori information about where in image      

to search for Clean Components (using “boxes” or “windows”) 

– very useful but potentially dangerous 

 

• Schwarz (1978): in the absence of noise, Clean algorithm is 

equivalent to a least squares fit of sinusoids to visibilities 

 



Basic Clean Algorithm (cont) 
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• last step: make the “restored” image 

– take residual map, which consists of noise and weak source 

structure below the Clean cutoff limit 

– add point source Clean components convolved with an elliptical  

Gaussian fit to the main lobe of the dirty beam (“Clean beam”)    

to avoid super-resolution of point source component model 

– resulting image is an estimate of the true sky brightness 

– units are (mostly) Jy per Clean beam area                                                   

= intensity, or brightness temperature 

 

– there is information from baselines that sample beyond the Clean 

beam FWHM, so modest super-resolution may be OK 

 

– the restored image does not actually fit the observed visibilities  

 



Clean Example 

50 50 

residual 

map 

CC model TD(x,y) 

restored  

image 



Clean with a “box” 
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residual 

map 

CC model TD(x,y) 

restored  

image 



Clean with poor choice of “box” 
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residual 

map 

CC model TD(x,y) 

restored  

image 



– Maximize a measure of smoothness 

(the entropy) 

 

 

        subject to the constraints 

 

 

 

        

– M is the “default image” 

– fast (NlogN) non-linear 

optimization solver due to 

Cornwell and Evans (1983) 

– optional: convolve model with 

elliptical Gaussian fit to beam and 

add residual map to make image 

 

 

Maximum Entropy Algorithm 
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b(x,y) 

TD(x,y) 



Maximum Entropy Algorithm (cont) 
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• easy to include a priori information with default image 

– flat default best only if nothing known 

• straightforward to generalize 2 to combine observations 

from different telescopes and obtain an optimal image 

• many measures of “entropy” available  

– replace log with cosh  “emptiness” (does not enforce positivity) 

• works well for smooth, extended emission 

• super-resolution regulated by signal-to-noise 

 

• less robust and harder to drive than Clean 

• can have trouble with point source sidelobes              

(could remove those first with Clean) 



Maximum Entropy Example 
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residual 

map 

maxen 

model 
TD(x,y) 

restored  

image 



Summary of Imaging Results 
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Natural Weight Beam Clean image 



Summary of Imaging Results 

57 

Uniform Weight Beam Clean image 



Summary of Imaging Results 
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Robust=0 Weight Beam Clean image 



Summary of Imaging Results 
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Robust=0 Weight Beam Maximum Entropy image 



Tune Resolution/Sensitivity to suit Science 

• e.g. SMA 870 mm images of protoplanetary disks with resolved 

inner holes (Andrews, Wilner et al. 2009, ApJ, 700, 1502) 

 

5
0

0
 A

U
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Noise in Images 
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• photometry of extended sources requires caution 

– Clean does not conserve flux (extrapolates) 

– extended structure can be missed, attenuated, distorted 

 

• be very careful with low signal-to-noise images 

– if source position known, 3  is OK for point source detection 

– if position unknown, then 5  required (and flux is biased up) 

– if < 6 , then cannot measure the source size                                 

(require ~3  difference between “long” and “short” baselines) 

– spectral line emission may have unknown position, velocity, width 



Scale Sensitive Deconvolution Algorithms 
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• basic Clean and Maximum Entropy are scale-free and    

treat each pixel as an independent degree of freedom 

– they have no concept of source size 

 

• adjacent pixels in an image are not independent 

– resolution limit 

– intrinsic source size, e.g. a Gaussian source covering 1000 pixels 

can be characterized by only 5 parameters, not 1000 

• scale sensitive algorithms try to employ fewer degrees of 

freedom to model plausible sky brightness distributions 

– MS-Clean (Multi-Scale Clean) 

– Adaptive Scale Pixel (Asp) Clean 

 

 



“Invisible” Large Scale Structure 

• missing short spacings (= large scale emission) can be problematic  

– to estimate? simulate observations, or check simple expressions for a 

Gaussian and a disk (appendix of Wilner & Welch 1994, ApJ, 427, 898) 

 

• do the visibilities in our example discriminate between these two 

models of the sky brightness distribution T(x,y)? 

Yes… but only on baselines shorter than ~100 k
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Missing Short Spacings: Demonstration 

>100 k  Clean image Clean image T(x,y) 
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Techniques to Obtain Short Spacings (1) 
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• a large single dish telescope 

– examples: JVLA & GBT, IRAM PdbI & 30 m telescope,                                          

                   SMA & JCMT 

– scan single dish across the sky to make an image 

– all Fourier components from 0 to D sampled, where D is the 

telescope diameter (weighting depends on illumination) 

 

 

 

– Fourier transform single dish map = T(x,y)  A(x,y),                    

then divide by a(x,y) = FT{A(x,y)} to estimate V(u,v) 

– choose D large enough to overlap interferometer samples of 

V(u,v) and avoid using data where a(x,y) becomes small 

 

 

density of 

uv points 



Techniques to Obtain Short Spacings (II) 
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• a separate array of smaller telescopes 

– example: ALMA main array & ACA 

– use smaller telescopes to observe short baselines not accessible 

to larger telescopes 

– use the larger telescopes as single dishes to make images with 

Fourier components not accessible to smaller telescopes 

 

   ALMA with ACA 

 
  50 x 12 m:   12 m to 14+ km 

 

+12 x   7 m:   fills 7 m to 12 m 

 + 4 x 12 m:   fills 0 m to   7 m 



Techniques to Obtain Short Spacings (III) 
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• mosaic with a homogeneous array 

– recover a range of spatial frequencies around the nominal 

baseline b using knowledge of A(x,y) (Ekers and Rots 1979),       

and get shortest baselines from single dish maps 

 

 

 

 

– V(u,v) is linear combination of baselines from b-D to b+D 

– depends on pointing direction (xo,yo) as well as (u,v) 

 

– Fourier transform with respect to pointing direction (xo,yo)  

 

 

 



Measures of Image Quality 
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• “dynamic range” 
– ratio of peak brightness to rms noise in a region                                           

void of emission (common in radio astronomy) 

– an easy to calculate lower limit to the error in                                   

brightness in a non-empty region 

 

• “fidelity” 

– difference between any produced image and the correct image 

– convenient measure of how accurately it is possible to make an image      

that reproduces the brightness distribution on the sky 

– need a priori knowledge of the correct image to calculate 

– fidelity image = input model / difference                                                                   

                         = model  beam  / abs( model  beam – reconstruction ) 

                         = inverse of the relative error 

– in practice, lowest values of difference need to be truncated 

 



Self Calibration 
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• a priori calibration is not perfect 

– interpolated from different time, different sky direction from source 

• basic idea of self calibration is to correct for antenna based phase 

and amplitude errors together with imaging 

• works because  

– at each time, measure N complex gains and N(N-1)/2 visibilities 

– source structure can be represented by small number of parameters 

– highly overconstrained problem if N large and source simple 

• in practice: an iterative, non-linear relaxation process  
– assume initial model  solve for time dependent gains  form new sky 

model from corrected data using e.g. Clean  solve for new gains… 

– requires sufficient signal-to-noise at each solution interval 

 

• loses absolute phase and therefore position information 

• dangerous with small N, complex source, low signal-to-noise 

 



Concluding Remarks 
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• interferometry samples visibilities that are related to a sky 

brightness image by the Fourier transform 

• deconvolution attempts to correct for incomplete sampling 

 

• remember… there are usually an infinite number of images 

compatible with the sampled visibilities 

• missing (or corrupted) visibilities affect the entire image 

• astronomers must use judgement in the process of imaging 

and devonvolution 

• it’s fun and worth the trouble  high angular resolution! 

 

• many, many issues not covered: see the References and 

upcoming talks at this workshop 



End 
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