Low-frequency Interferometry

Lincoln Greenhill

Thirteenth Synthesis Imaging Workshop 2012 May 29– June 5

Science

> Key science drivers at low frequencies:

- Dark Ages (spin decoupling)
- Epoch of Reionization (highly redshifted 21 cm lines)
- Early Structure Formation (high z RG)
- Large Scale Structure evolution (diffuse emission)
- Evolution of Dark Matter & Dark Energy (Clusters)
- Wide Field (up to all-sky) mapping
- Large Surveys
- Transient Searches (including extrasolar planets) (Hallinan talk)
 - Galaxy Evolution (distant starburst galaxies)
 - Interstellar Medium (CR, HII regions, SNR, pulsars)
 - Solar Burst Studies
 - Ionospheric Studies
 - Ultra High Energy Cosmic Ray Airshowers
 - Serendipity (exploration of the unknown)

The Low Frequency Sky

synchrotron emission

- Bremsstrahlung (thermal free-free)
 - $_{\odot}$ prominent @ cm λ (>1 GHz)
 - \circ acceleration of e⁻ by ions
 - \circ function of density and temperature
 - possibly seen in absorption if thick
- also radio recombination lines

New Mexico Tech

a story of two skies

The Low Frequency Sky

The Low Frequency Sky

Thirteenth Synthesis Imaging Workshop

Resources: All sky surveys

- a few surveys sensitive to O(1°)-scale emission
- two all sky surveys sensitive to compact emission
 - <u>– 7</u>4 & 150 MHz

New Mexico Tech

NRA

New Mexico

The University of New Mexic

Resources: VLA Low Frequency Sky Survey

Survey parameters: v = 74 MHz, $\delta > -30^{\circ}$, $\Theta = 80''$ resolution, RMS~100 mJy/beam

- N ~ 70,000 sources in ~ 95% of sky > -30° Statistical sample of mundane & rare populations
 - → fast pulsars, distant radio galaxies, cluster radio halos and relics
- calibration grid for low-frequency instruments
- data online at NED & <u>http://lwa.nrl.navy.mil/VLSS</u>
- successor ELVA low-frequency system in development
 - ➤ 10x bandwidth @ 74 MHz
 - Ieverages increased correlator capability

Cohen et al. (2007)

Resources: GMRT/TGSS

in progress (DR4 online April 2012)

- survey parameters:
 - v= 150 MHz, $\delta \gtrsim -55^{\circ}$
 - $\theta = 20'', \sigma \sim 10 \text{ mJy/beam}$
- > N ~ 10⁶ sources anticipated statistical samples of populations...
- enhances low-freq. calibration grid

New Mexico Tech

Sucessor EVLA Low-Band System

receivers (in development) and single broadband feed (in study)

➢ P-band: BW increased, 40 → 240 MHz

➤ demonstrated

➤4-band: BW Increase, 1.5 → 16 MHz

Limited on low end by present EVLA IF system

Limited on high end by the FM band (88 MHz)

➤ more flexible RFI rejection enabled by WIDAR

Improved algorithms for large FOV

New Mexico Tech

(66 to 82 MHz)

(230 to 470 MHz)

MAGNITUDE

Early Results EVLA @ P-band

Thirteenth Synthesis Imaging Workshop

- feeds (Hayward talk)
 - horns at high/mid frequency
 - impractical below ~ 1 GHz: size > $\lambda \implies$ massive, awkward
 - bare dipoles at low frequency
 - basic model: $\lambda/2$ resonant (narrow-band) antenna
 - 'electrically short' dipoles are effective
 - diversity of space-saving configurations
 - BUT broadband designs involve many trade-offs
 - messy circuit elements (variable impedance, ugly gain patterns,...)
- two common configurations
 - dipole + dish: large collecting area per dipole (\$\$\$)
 - dipole + ground screen: small area, $A_e \sim G\lambda^2/4\pi$ (\$)
 - motivates 'large-N' arrays or beam forming *crazy-new architectures*

Jim Ruff's Web Pages - http://www.aoc.nrao.edu/~jruff/A1Vertex.jpg

150 MHz feed: folded dipole

GMRT

30-80 MHz feed: folded dipole

The University of New Mexic

Thirteenth Synthesis Imaging Workshop

<u>New Mexico</u> CONSORTIUM

- bare dipoles
- PAPER
 - Precision Array to
 Probe the Epoch of
 Reionization
 - 100-200 MHz dipoles
 - ground screen crib increases A_e (~8 m²)
 - drift scan operation
 - smooth, stable gain pattern
 - eor.berkeley.edu/

structural details affect characteristics

- bare dipoles
- LWA
 - Long Wavelength Array
 - 10-88 MHz dipoles
 - dipole size $\propto \lambda$
 - $A_{e} \sim 7 m^{2}$
 - drift scan
 - close packing $(0.5-1.4\lambda)$
 - mutual coupling perturbs gain patterns...
 - open access facility adjacent to VLA

- bare dipoles (phased)
- MWA
 - Murchison Wide-field Array
 - 80-300 MHz dipoles
 - bowtie geometry
 - tiling increases A_e (~20 m²)
 - tracking via crude phasing
 - complicated beam pattern
 - multiplies costs
 - mwatelescope.org

Thirteenth Synthesis Imaging Workshop

- discrete tracking
- complex sidelobes
- rotate on the sky
- beam former electronics determine stability/ repeatability

Mixed Blessings

- dipole + dish
 - the good
 - sensitive
 - continuous, accurate tracking
 - stable receptor gain pattern
 - effective for small N
 - moderate computation
 - moderate algorithm development
 - narrow FOV
 - the bad
 - expensive
 - snapshots deliver limited DNR
 - narrow FOV

- bare dipoles
 - the good
 - inexpensive
 - wide FOV
 - steerable when arrayed
 - the bad
 - inexpensive
 - wide FOV
 - steerable when arrayed
 - the ugly
 - require very large N
 - computationally demanding
 - difficult algorithmic challenges

New Mexico

Low Frequency Challenges

- Sky brightness
- Source confusion
- lonospheric distortion
- Radio Frequency Interference (RFI)
- Wide fields of view (FOV)
- Variable dipole response (for fixed dipole arrays)

Thirteenth Synthesis Imaging Workshop

Sky brightness

$$T_{sys}(K) = 131000 \left(\frac{\nu}{15 \ MHz}\right)^{-2.55}$$

courtesy G. Bernardi

Thirteenth Synthesis Imaging Workshop

Confusion

- \succ source counts rise to lower F_v
- > for any angular resolution θ
 - there is a confusion limit
 - individual weak sources blend
 - the resulting sky noise may exceed thern

 $\theta \sim 1$ ', rms ~ 3 mJy/beam

 θ ~ 10', rms ~ 30 mJy/beam

- such cases are "confusion limited"
- F_v ~ 3 mJy (θ/2')(150 MHz / nu)^{0.7}
 (Bernardi et al. 2010)

New Mexico Tech

Low Frequency Challenges

- Sky brightness
- Source confusion
- lonospheric distortion
- Radio Frequency Interference (RFI)
- Wide fields of view (FOV)
- Variable dipole response (for fixed dipole arrays)

lonosphere

Waves in the ionosphere introduce rapid phase variations (~1°/s on 35 km BL)

Phase coherence is preserved on BL < 5km (gradient)

BL > 5 km have limited coherence times

Without proper algorithms this limits the capabilities of low frequency instruments

Correlation preserved Correlation destroyed

wedge – refraction, absorption (< 30 MHz), Faraday rotation

wave and turbulence – rapid phase winding, differential refraction, source distortion...

- ➤ wedge introduces thousands of turns of phase at 74 MHz per LOS
- interferometers sense differences among antennas and across FOV's
 - primarily culprits: waves and turbulence

Antenna Phase as a Function of Time

Ionospheric Refraction & Distortion

Ionospheric Differential Refraction

Correcting for the lonosphere

- frontier in research
- assumptions
 - 2D sheet
 - refractive model (Intema et al. 2009; Cotton: Lane et al. 2012)
 - 3D sheet
 - tomography for a power spectrum in n_e (Koopmans 2010) TBD
- corrections may be applied in
 - I, m grid
 - rubber sheet; Mitchell et al. 2008
 - visibility model calc. during deconvolution
 - Intema et al. 2009

New Mexico Tec

- u,v plane, in combination w/ direction-dependent gridding
 - CASA plan U. Rao, S. Bhatnagar, p.c.

■New Mexico ONSORTIUM

Low Frequency Challenges

- Sky brightness
- Source confusion
- lonospheric distortion
- Radio Frequency Interference (RFI)
- Wide fields of view (FOV)
- Variable dipole response (for fixed dipole arrays)

Radio Frequency Interference

> natural & man-generated RFI at low frequencies is pervasive

- ➤ power lines
- broadcast, communications, & radar
- digital hardware
- keeping sites clean requires care / easily spoiled
- > at GMRT & LWA: power line noise has been a problem
- ➤ at VLA: many signatures between 74 and 330 MHz
 - > narrowband, wideband, time varying, 'wandering'
 - can be wideband (affecting C & D configurations)
 - solar effects unpredictable
 - ➢ quiet sun is a benign 2000 Jy disk at 74 MHz
 - \succ solar bursts can be 10⁹ Jy and lead to geomagnetic storms
- mitigation is done first in a processing path
 - > usually requires high spectral resolution and short time averaging

RFI Examples

Short baseline

Time

RFI is worst on short baselines

Long baseline

Several 'types': narrow band, wandering, wideband, ...

The University of New Mexic

Wideband interference can degrade automated routines

<u>New Mexico</u>

Spectral Kurtosis

• Kurtosis estimator:

$$V_k^2 = \frac{MNd + 1}{M - 1} \left(M \frac{S_2}{S_1^2} - 1 \right)$$

Comparison:

$$\operatorname{Var}(V_k^2) \approx 4N^2 / M$$

(Nita et. al. 2010b)

- Kurtosis characterizes Gaussian nature of noise
 - e.g., power in a spectral channel
- Estimate V_k² for each spectral channel
 - M: no. of time samples
 - N: sample pre-averaging before accumulation (N=1)
 - S_1 : accumulated power spectral density ~ Σx^2
 - S₂: accumulated square of power spectral density $\sim \Sigma x^4$

Excision via Spectral Kurtosis Analysis

- Parkes CASPSR time-series data intended for pulsar detection
- movies with and without excision based on real-time kurtosis calculation
- evaluate V_k² every 256 τ-samples, across 512 v-channels
- flag for $V_k^2 > 3 \times var(V_k^2)$

Excision via Spectral Kurtosis Analysis

• Analysis of spectral kurtosis → time occupancy estimate

Low Frequency Challenges

- Sky brightness
- Source confusion
- lonospheric distortion
- Radio Frequency Interference (RFI)
- Wide fields of view (FOV)
- Variable dipole response (for fixed dipole arrays)

Wide FOV

- dipoles: PAPER: 60°; MWA: 20°; LWA/LEDA: 130°
- dishes: VLA: 11° (74 MHz); GMRT: 3° (150 MHz)
- requires advanced techniques if non-coplanar
 - ➤ faceting (well understood)
 - w-correction + various (uv) deconvolution schemes (Bhatnagar talk)
 - potentially computationally expensive
- ≻can use warped snapshot imaging if coplanar (Ord et al. 2010)
 - enables geometric correction alone
 - \succ effective in combination with peeling for large-N_{ant}

(I,m) grid from FFT $\Delta HA = \pm 3.5^{h}$ FOV = 45°

re-sample to a fixed coordinate frame

The University of New Mexico

Demonstration for a fixed dipole array

courtesy D. Mitchell

Thirteenth Synthesis Imaging Workshop

<u>New Mexico</u>

Gain Patterns

- cutting edge
 - A-projection in CASA (Bhatnagar, Rao)
 - cuWARP package (Mitchell et al. 2012)
 - MWA, LEDA
- dipole arrays may admit variation in gain pattern, receptor to receptor
 - downside of low cost
 - downside of beam forming
 - e.g., MWA, LOFAR
 - mutual coupling
 - e.g., LWA (Ellingson et al. 2012)
- cannot repair via image-plane correction
- <u>can</u> repair during gridding (u,v)
 - convolve each visibility w/ a FT kernel representing the gain pattern
 - different FT pair for each visibility! (\$\$)

New Mexico

Summary

- low-frequency interferometry is wild
 - challenges everywhere: sky brightness, confusion, ionospheric variability, RFI, FOV approaching 2 rad, and fundamental instrument calibration
 - new algorithms & implementations are providing solutions
- dish arrays: deep high resolution sky surveys
 - active programs expand capability
- dipole arrays: past 1st light pursuing cosmology to exoplanets
 - breaking all the rules of the game
 - "...may I please have a high frequency, narrow band dataset on an isolated unpolarized pt source?"

Summary

≻This is our motivation:

- Dark Ages (spin decoupling)
- Epoch of Reionization (highly redshifted 21 cm lines)
- Early Structure Formation (high z RG)
- Large Scale Structure evolution (diffuse emission)
- Evolution of Dark Matter & Dark Energy (Clusters)
- Wide Field (up to all-sky) mapping
- Large Surveys
- Transient Searches (including extrasolar planets) (Hallinan talk)
 - Galaxy Evolution (distant starburst galaxies)
 - Interstellar Medium (CR, HII regions, SNR, pulsars)
 - Solar Burst Studies
 - Ionospheric Studies
 - Ultra High Energy Cosmic Ray Airshowers
 - Serendipity (exploration of the unknown)

Thirteenth Synthesis Imaging Workshop

-end-