Planning ALMA Observations Atacama Large mm/sub-mm Array

Mark Lacy North American ALMA Science Center

Associated Universities. Inc. Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Talk Outline

NRAC

ALMA Basics

- Global partnership (shared cost ~1.3 billion): North America (US, Canada, Taiwan) Europe (ESO) East Asia (Japan, Taiwan) In collaboration with Chile
- Unique high, dry site: 5000m (16,500 ft) in Chilean Atacama desert
- At least 66 submillimeter/millimeter telescopes: 12-m Array – 50 x 12-m Atacama Compact Array (ACA) - 12x7-m, 4x12-m
- On budget and on time for completion in 2013

ALMA Basics

- Global partnership (shared cost ~1.3 billion): North America (US, Canada, Taiwan) Europe (ESO) East Asia (Japan, Taiwan) In collaboration with Chile
- Unique high, dry site: 5000m (16,500 ft) in Chilean Atacama dese
- At least 66 submillimeter/millimeter telescope 12-m Array – 50 x 12-m Atacama Compact Array (ACA) - 12x7-m, 4x12-m
- On budget and on time for completion in 2013

Full Science Capabilities

10-100× better sensitivity and resolution than current mm arrays.

- Baselines to ~15 km (0.015" at 300 GHz) in "zoom lens" configurations
- Sensitive, precision imaging 84 to 950 GHz (3 mm to 315 μm)
- State-of-the-art low-noise, wide-band SIS receivers (8 GHz bandwidth per polarization)
- Flexible correlator with high spectral resolution at wide bandwidth

NRAC

Frequency Coverage

NRAO

ALMA

J.

Collecting Area & Baselines

Circles Show Collecting Area (sensitivity) Captions give # of antennas and # of baselines (fidelity)

Current Status

- Cycle 0 observing began 30 Sep '11.
- Cycle 1 call for proposals out (12 July)
- Data delivered to PIs.
- Commissioning ongoing.
- 31+ antennas at high site.
- Correlators (ACA and main) working.
- All antennas: B3, 6, 7, and 9 receivers.
- Science verification ongoing, data publicly available.

Science Verification Data

• ALMA data released for:

TW HYDRA* THE ANTENNAE GALAXIES* NGC 3256* SGR A-STAR M100 IRAS 16923 BR1202 (HIGH REDSHIFT QUASAR)

download from ALMA Science Portal http://almascience.org/

- Calibrated & uncalibrated data, images.
- * CASA guide available at <u>http://casaguides.nrao.edu</u>

HCO+ J=4-3 in TW Hya

ALMA

CO J=3-2 in the Antennae

ALMA Images Nearby Galaxies

• Science verification imaging of the Antennae Galaxies

ALMA Images Nearby Galaxies

• Science verification imaging of M100

ALMA Images Debris Disks

• PI Boley (U. Florida) Data on Fomalhaut Debris Disk

Talk Outline

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Science Goal (Cycle I)

- One correlator + front end setup in one ALMA band SPECTRAL WINDOWS, REST FREQUENCY, POLARIZATION, LINE VS. CONTINUUM
- Subject to one set of control parameters SPATIAL RESOLUTION, LARGEST ANGULAR SCALE, SENSITIVITY, DYNAMIC RANGE
- Using one mapping strategy MOSAIC, OFFSETS, SINGLE FIELDS
- Using one calibration strategy SYSTEM OR USER DEFINED
- Applied to Sky Targets within 15° UP TO 15 PER SCIENCE GOAL OR 150 FIELDS PER MOSAIC, UP TO 5 DIFFERENT VELOCITIES

Science Goal (Cycle I)

NRAC

- Fundamental unit (below proposal) in the ALMA OT
- Five Science Goals allowed per proposal in Cycle 1

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Spectral Setup: Receiver

• Four receiver "bands," set spectral coverage OBSERVING FREQUENCY ALSO AFFECTS RESOLUTION, PRIMARY BEAM

Band	Frequency (GHz)	Primary beam (arcsec)	Angular Resolution (arcsec)	Continuum Sensitivity (mJy min ^{1/2})
3	84 - 116	62	0.6 - 4.1	0.09
6	211 - 275	25	0.3 - 1.7	0.14
7	275 - 373	19	0.2 - 1.2	0.25
9	602 - 720	9	0.1 - 0.6	2.5

Spectral Setup

Sidebands

• Receivers sensitive to two separate ranges of sky frequency: sidebands

Sideband width varies by receiver band

Band 3: 4 GHz, Band 6: 5 GHz, Band 7: 4 GHz, Band 9: 8 GHz

Basebands

- Each antenna has 4 digitizers which can each sample 2 GHz of bandwidth
- These 2 GHz chunks are termed **basebands** (they may overlap)
- Basebands must be distributed in the frequency covered by the sidebands (all 4 in one sideband, or two in each; Band 9 does not have this restriction)

Local Oscillator Frequency

Spectral Windows

- To collect data, you set up a **spectral window** in one or more basebands
- These regions of the spectrum are processed by the correlator
- The correlator allows tradeoff of frequency resolution and bandwidth
- In Cycle I, 4 spectral windows are available.
- Spectral windows must lie within the baseband, sideband, receiver range.

NKAU

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

Spectra	l Line				?
Fractio	n Center Freq (Rest)	Center Freq (Sky)	Transition	Bandwidth, Channel Spacing	Representative Window
Sele	ct Lines to Observe in	n Baseband-0	Add Dele	te	
	1		K		
	Select a lin	e with you	r	Add a spectral window by	
sou	urce velocit	y, this defin	ies a	hand.	
	frequ	lency.			
V	n				

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
 This involves trading off between resolution and bandwidth.
- The OT will configure the LO and basebands to match (if possible)

Spectral	Line							
Basebar	nd-0							?
Fraction	Center Freq (Rest)	Center Freq (Sky)	Transition		Banc	width, Channel Spacing		Representative Window
1(Full)	100.00000 GHz	100.00000 GHz	Manual window	58.594 MHz(176 km/s),	15.259 kHz(0.046 km/	s) 🔻	0
		·		58.594 MHz(176 km/s),	15.259 kHz(0.046 km/	s)	
				117.188 MHz(351 km/s),	30.518 kHz(0.091 km/	s)	
				234.375 MHz(703 km/s),	61.035 kHz(0.183 km/	s)	
I				468.750 MHz(1405 km/s),	122.070 kHz(0.366 km/	s)	
				937.500 MHz(2811 km/s),	244.141 kHz(0.732 km/	s)	
Select	Lines to Observe in	Baseband-0	Add Dele	1875.000 MHz(5621 km/s),	488.281 kHz(1.464 km/	s)	
				2000.000 MHz(5621 km/s),	15.625 MHz(46.843 km/	s)	

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

VISUALIZING THE SPECTRAL SETUP IN THE OT

- Pick a frequency (by hand or source + line) for each SPW
- Pick a correlator mode for each SPW
- The OT will configure the LO and basebands to match (if possible)

VISUALIZING THE SPECTRAL SETUP IN THE OT

Practical Introduction

- Video Tutorials and Quickstart Guides
- https://almascience.nrao.edu/call-for-proposals/observing-tool/video-tutorials

Atacama Large Millimeter/submillimeter Array In search of our Cosmic Origins ESO NRAO NAU About ALMA You are here: Home > Call for Proposals > Observing Tool > OT V OT Video Tutorials The OT video tutorials provide an audio-visual demonstration	Search Site Password Forgot Account ideo Tutorials tion of different aspects of the ALMA OT and proposal preparation:
I. A brief overview of the OT	II. Creating proposal in 10 easy steps
III. The spectral setup	IV. The patial field setup

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

• Single field

Up to 15 individual fields in one Science Goal $\underline{\rm if}$ they are within 15° Up to 5 different velocities in each Science Goal

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS SACRIFICE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET, OR SOURCE) PER PROPOSAL

ditors	
Spectral Spatial Field	Setup
Input the source you wish t Alternatively you may defir	to look at and your mapping specification. ne this with the Visual Editor – select the spatial tab.
T Tauri Procyon For	nalhaut SinglePoint Beta Pictoris
Source	?-
Source Name	Beta Pictoris Resolve
Choose a Solar System Obje	ect? Name of object Unspecified -
Source Coordinates	System J2000 Sexagesimal display? Parallax 51.44000 mas PM RA 4.65000 mas/yr
	Dec -51:03:59.441 Resolved by simbad.ustrasbg.fr PM Dec 83.10000 mas/yr 🗸
Source Velocity	20.000 km/s 🗸 hel 👻 z 0.000066715 Doppler Type RELATIVISTIC 👻
Target Type	Multiple Pointings ○ 1 Rectangular Field
-Expected Source Propertie	c

Multiple sources in one Science Goal

• Single field

Up to 15 individual fields in one Science Goal $\underline{\rm if}$ they are within 15° Up to 5 different velocities in each Science Goal

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS SACRIFICE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET, OR SOURCE) PER PROPOSAL

	Rectangle	? -
	System J2000	
	Coordinates Offset(Longitude) -4.08150 arcsec 💌	
	Offset(Latitude) 1.44704 arcsec	
	p length 144.76218 arcsec 👻	
	a length 91.74826	
	Position Angle -39.20369 deg 💌	
	Spacing 0.48113 fraction of main beam 👻 Reset to Nyquist	
	#Pointings 12m Array 18 7m Array 7 Export	
🖏 🖏 🔲 🖏 1x 372,252 10477.0		
04:21:53.852, +19:31:23.71 (J2000)		
image filename : .jsky3/cache/jsky5206833294670384194.fits		

• Single field

-ALMA

Up to 15 individual fields in one Science Goal $\underline{\rm if}$ they are within 15° Up to 5 different velocities in each Science Goal

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS SACRIFICE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, OFFSET, OR SOURCE) PER PROPOSAL

• Single field

Up to 15 individual fields in one Science Goal $\underline{\rm if}$ they are within 15° Up to 5 different velocities in each Science Goal

• Mosaic

OFFSETS ARE MOSAICS, MOSAICS SACRIFICE EFFICIENCY FOR IMAGING QUALITY UP TO 150 POINTS (TOTAL: MOSAIC, **OFFSET**, OR SOURCE) PER PROPOSAL

PointingPattern	: Offset	v	
Offset Unit	arcmin	-	
#Pointings	5		
RA [arcn	nin]	Dec [arcmin]	
0.00000		0.25000	-8
0.00000		-0.25000	_
-0.25000		0.00000	
0.25000		0.00000	-
	Add	Delete	

Individual Offset Field Centers

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Control and Performance

- Target angular resolution CONSTRAINS TELESCOPE CONFIGURATION ALLOWED WHEN DATA ARE TAKEN
- Largest angular scale expected for target LARGEST ANGULAR EXTENT OF TARGET.
- Target RMS noise FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SPECIFIED)
- Request for ACA observations
 Largest ANGULAR SCALE + TARGET ANGULAR RESOLUTION WILL RECOMMEND

Sensitivity

• Target RMS noise FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SELECTED)

		Sens	itivity (Calcul	ator						
Common Parameters											
	Dec		00:00	0.00:	00]		
	Polarization		Dual					-			
	Observing Fre	quency	345.00	0000		GHz		-			
	Bandwidth pe	r Polarization	0.000	00		GHz		-	1		
	Water Vapour		Aut	omati	c Choice 🤇	Manu	al Ch	oice	1		
	Column Den	nsity	0.913	mm (3	rd Octile)						
	tau/Tsky		tau=0.	158,	Tsky=44.4	00 K]		
	Tsys		153.57	77 K							
Individual Parameters	;										
Number of Antennas	12m Array				7m Array			T - 1	otal Power	Array	
Resolution	0.00000	arcsec			5 974554 arcsec			17.923662 arcsec		-	
Sensitivity(rms)	0.00000	lv		-	0.00000		- 0	00000	Iv		
(equivalent to)	Infinity	v		-	0.00000		γ ζ		00000	V K	-
(equivalent to)	0.00000	к с			0.00000		~		000000	ĸ	-
integration Time	0.00000	5			0.00000		S		5.00000	5	
				Integ	gration Tim	e Unit	Optio	n A	utomatic		-
		tion Times		Calaul				ch			
(Laiculate integra	ation Time		Calcul	ate Sensitiv	/ITV		- (.)(ose		

Sensitivity

• Target RMS noise FOR A FIDUCIAL FREQUENCY AND BANDWIDTH (BOTH USER SELECTED)

Resolution

- Target angular resolution
 Constrains telescope configuration allowed when data are taken
- High resolution leads to lower surface brightness sensitivity RMS PROPORTIONAL TO BEAMWIDTH² HOLDING ALL OTHER FACTORS FIXED.

• Maximum angular scale (MAS) recovered by array

Band	and Frequency Primary		Range of	Scales (")
	(GHz)	beam (")	C32-1	C32-6
3	84-116	72 - 52	4.2 - 24.6	0.7 - 15.1
6	211-275	29 - 22	1.8 - 10.7	0.3 - 6.6
7	275-373	22 - 16	1.2 - 7.1	0.2 - 4.4
9	602-720	10 – 8.5	0.6 - 3.6	0.1 - 2.2

- **Smooth** structures larger than MAS begin to be resolved out.
- All flux on scales larger than λ/B_{min} (~2 x MAS) completely resolved out. Need additional observations with a single-dish or a compact array of small telescopes.

• Maximum angular scale (MAS) recovered by array

Band	Frequency (GHz)	Primary beam (")	l C:	Range o 2 1	of Scales (") C32		
3	84-116	72 - 52	4.2 -	24.6	0.7 -	15.1	
6	211-275	29 - 22	1.8 -	10.7	0.3	6.6	
7	275-373	22 - 16	1.2	7.1	0.2	4.4	
9	602-720	10 – 8.5	0.6	3.6	0.1	2.2	

- **Smooth** structures larger than MAS begin to be resolved out.
- All flux on scales larger than λ/B_{min} (~2 x MAS) completely resolved out. Need additional observations with a single-dish or a compact array of small telescopes.

Largest Angular Scale (LAS)

Largest angular scale of interest for target
 DEPENDS ON SOURCE STRUCTURE AND SCIENCE AIMS

NRAC

e.g., compact sources embedded in a smooth superstructure holding ~65% of flux (here with perfect S/N)

Largest Angular Scale (LAS) ALMA

Superstructure of scientific interest? ٠ THEN YOUR RMS AND LAS MUST REFLECT THAT.

RMS set to detect superstructure and LAS input to reflect size of structure.

Largest Angular Scale (LAS) ALMA

Only embedded compact sources of interest? ٠

RMS set to detect compact sources and LAS input to reflect compact source size.

To Use the ACA?

Ultimately YOUR Decision

ONLY ~250 hours (1/3 of total time) will go to projects needing ACA.

To Use the ACA?

Ultimately YOUR Decision

ONLY ~250 hours (1/3 of total time) will go to projects needing ACA.

To Use the ACA?

• When in doubt, simulate! "OBSERVE" A MODEL OF YOUR TARGET WITH 12-M AND 12-M+ACA, COMPARE

Key Proposal Factors

- Framework: Science Goals
- Spectral Setup
- Spatial Setup
- Control and Performance Specifications
- Logistics

Proposal Checklist

Required Step

Read Primer and Proposer's Guide

Create an ALMA account by registering at the Science Portal

Download the Observing Tool (OT)

Familiarize yourself with the OT via the Quickstart Video

Define your Science Goals within the OT

use the OT to understand if your science goals match ALMA's capabilities use CASA simdata for a more thorough exploration take advantage of the TA Checklisted generated by the OT

Prepare the Science & Technical Justifications (one PDF file)

Annotated LaTeX template available

Make use of the Helpdesk & the Knowledgebase

Submit to Archive!

TA Checklist

Checklist of technical concerns generated by the OT as part of PDF output

Field Setup:	
Target(s) max. elevation is low (< 20 degrees)	_
Target(s) max. elevation is high (> 84 degrees)	_
Non-zero proper motion of target(s)	1
Spatial dynamic range > 500 (on basis of peak flux to rms)	_
Spectral dynamic range > 1000 (B3, B6), 500 (B7), 100 (B9)	_
Mosaic pointing separation outside range 0.48 - 0.8 1.2* λ /D	_
Velocity frame is not LSR_K	1
Velocity definition is relativistic	1
Spectral Setup:	
Single Polarization selected	_
Linewidth > 90% spectral window width	_
Single spectral window only selected	_
Calibration:	
Any user calibration selected	_
Control and Parameters:	
Largest scale of interest > max. recoverable scale	1
Extra time selected	_
ACA request and necessity estimator diagreement	_

F-1

The ALMA Science Portal

https://almascience.nrao.edu

Hub for project-wide material.

- Observing Tool
- Sensitivity Calculator
- Proposer's Guide
- Technical Handbook
- Science Verification Data
- CASA & Simulations
- Tutorials
- Helpdesk

Registration required to propose.

The NAASC

https://science.nrao.edu/facilities/alma

The North American ALMA Science Center

- One of three ALMA Regional Centers
- Offers science support to NA Any Taiwain or world members who request.

Support for:

- Proposal preparation & submission
- Observation preparation
- Data archive
- Data processing
- Face-to-face visits for data reduction
- Workshops, tutorials, and outreach
- Some publication and student support

