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Synopsis

*  Why do we have to calibrate!
* Idealistic formalism = Realistic practice.... data!
* Editing
* Fundamental Calibration Principles
— Practical Calibration Considerations
— Baseline-based vs. Antenna-based Calibration
* Scalar Calibration Example
* Generalizations
— Full Polarization
— A Dictionary of Calibration Effects
— Calibration Heuristics and ‘Bootstrapping’
* New Calibration Challenges
* Summary
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Why Calibration and Editing?

* Synthesis radio telescopes, though well-designed,are not perfect (e.g.,
surface accuracy,receiver noise,polarization purity, gain stability,geometric
model errors, etc.)

* Need to accommodate deliberate engineering (e.g.,frequency conversion,
analog/digital electronics,filter bandpass, etc.)

* Hardware or control software occasionally fails or behaves unpredictably

* Scheduling/observation errors sometimes occur (e.g., wrong source
positions)

* Atmospheric conditions not ideal

* Radio Frequency Interference (RFl)

Determining instrumental properties (calibration)
IS a prerequisite to
determining radio source properties
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From ldealistic to Realistic

* Formally,we wish to use our interferometer to obtain the visibility

function:
_ —i27 (ul+
V)= [1(,me 7" ™ digm
sky
* ....aFourier transform which we intend to invert to obtain an image of the
sky:

1(,m) = |V (u,v)e'? ™™ dudv

uv

— V(u,v) describes the amplitude and phase of 2D sinusoids thatadd up to
an image of the sky

* Amplitude: “~how concentrated?”
* Phase: “~where?”
 Howdo we measure V(u,v)?
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From ldealistic to Realistic

* In practice,we correlate (multiply & average) the electric field (voltage)
samples, x; & x; received at pairs of telescopes (i) and processed through
the observing system:

°b3§ v, = <xi (:xj (;

ij !
_JVtrues V

ij !
— X & x; are mutually delay-compensated for a specific pomt on the sky
— Averaging duration is set by the expected timescales for variation of the
correlation result (~seconds)

J;is an operator characterizing the net effect of the observing process for
antennasiand j on baseline ij which we must calibrate

* Sometimes J; corrupts the measurement irrevocably, resulting in data that
must be edited or “flagged”

R New Meico [N
New Mex1co Tech et CONSORTIUM




What Is Delivered by a Synthesis Array?

* An enormous list of complex visibilities! (Enormous!)
— At each timestamp (~1-10s intervals): N(N-1)/2 baselines
e EVLA: 35Ibaselines
* VLBA: 45 baselines
* ALMA: 1225-2016 baselines
— For each baseline: up to 64 Spectral Windows (“spws”, “subbands” or “|Fs”)
— For each spectral window: tens to thousands of channels
— For each channel: |, 2, or 4 complex correlations (polarizations)
* EVLA orVLBA: RR or LL or (RR,LL), or (RR,RL,LR,LL)
« ALMA: XX orYY or (XX,YY) or (XX, XY,YX,YY)
— W/ith each correlation,a weight value and a flag (T/F)

— Meta-info: Coordinates, antenna, field, frequency label info

Nio = N X Ny x N X N X N

spw chan

— ~few 10 x Ng,,, X Ngan X N, VisThour = 10s to 100s of GB per observation

Spw
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A Typical Dataset (Polarimetry)

* Array:
— EVLA D-configuration (Apr 2010)
* Sources:

— Science Target: 3C391 (7 mosaic pointings)
— Near-target calibrator:J1822-0938 (~1 | deg from target)
— Flux Density calibrator: 3C286
— Instrumental Polarization Calibrator: 3c84
* Signals:
— RR,RL,LR,LL correlations

— One spectral window centered at 4600 MHz, 128 MHz bandwidth, 64
channels
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The Array
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UV-coverages
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TheVisibility Data (source colors)

Amp vs. Time
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TheVisibility Data (baseline colors)

Amp vs. Time
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TheVisibility Data (baseline colors)

Phase vs. Time
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TheVisibility Data (baseline colors)

Phase vs. Time
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A Single Baseline - Amp

Amp vs. Time
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A Single Baseline — 2 scans on 3C286

Phase vs. Time
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Amp vs. Frequency

Single Baseline, Single Integration
Visibility Spectra (4 correlations)

Phase vs. Frequency
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Single Baseline, Single Scan
Visibility Spectra (4 correlations)

Amp vs. Frequency Phase vs. Frequency
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Single Baseline, Single Scan (time-averaged
Visibility Spectra (4 correlations)

Amp vs. Frequency

Phase vs. Frequency
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Data Examination and Editing

* After observation,initial data examination and editing very important
— Will observations meet goals for calibration and science requirements?

*  What to edit (much of this is automated):

— Some real-time flagging occurred during observation (antennas off-source, LO
out-of-lock, etc.). Any such bad data left over? (check operator’s logs)

— Any persistently ‘dead’ antennas (check operator’s logs)
— Periods of especially poor weather? (check operator’s log)
— Any antennas shadowing others? Edit such data.
— Amplitude and phase should be continuously varying—edit outliers
— Radio Frequency Interference (RFl)?
e Caution:
— Be careful editing noise-dominated data.

— Be conservative:those antennas/timeranges which are bad on calibrators are
probably bad on weak target sources—edit them

— Distinguish between bad (hopeless) data and poorly-calibrated data. E.g., some
antennas may have significantly different amplitude response which may not be
fatal—it may only need to be calibrated

— Choose (phase) reference antenna wisely (ever-present,stable response)
s, Increasing data volumes increasingly demand automated editing algorithms...
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Editing Example

Amp vs. Time
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Editing Example

Amp vs. Time
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Editing Example

Amp vs. Time

Scans 34-41
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Editing Example

Amp vs. Time
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Practical Calibration Considerations

* A priori“calibrations” (provided by the observatory)
— Antenna positions, earth orientation and rate, clocks
— Antenna pointing, voltage pattern, gain curve
— Calibrator coordinates, flux densities, polarization properties

* Absolute engineering calibration (dBm,K, volts)?

— Amplitude: episodic (ALMA) or continuous (EVLA/VLBA) Tsys/switched-
power monitoring to enable calibration to nominal K (or Jy, with antenna
efficiency information)

— Phase: practically impossible (relative antenna phase)
— Traditionally, we concentrate instead on ensuring instrumental stability on
adequate timescales
* Cross-calibration a better choice

— Observe strong nearby sources against which calibration (J;) can be solved,
and transfer solutions to target observations

— Choose appropriate calibrators; usually point sources because we can easily
predict their visibilities (Amp ~ constant, phase ~ 0)

— Choose appropriate timescales for calibration
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‘“Absolute’ Astronomical Calibrations

* Flux Density Calibration

— Radio astronomy flux density scale set according to several
“constant” radio sources,and planets/moons

— Use resolved models where appropriate
* Astrometry

— Most calibrators come from astrometric catalogs; sky coordinate
accuracy of target images tied to that of the calibrators

— Beware of resolved and evolving structures,and phase transfer
biases due to troposphere (especially for VLBI)

* Linear Polarization Position Angle

— Usual flux density calibrators also have significant stable linear
polarization position angle for registration

* Relative calibration solutions (and dynamic range) insensitive to errors
in these “scaling” parameters
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Baseline-based Cross-Calibration

obs _ mod
V> =LV,

J
* Simplest,most-obvious calibration approach:measure complex response
of each baseline on a standard source,and scale science target visibilities

accordingl
gly J. = <Vijobs /V..mOd >A
t

“Baseline-based” Calibration: J
* Only option for single baseline “arrays”

* Calibration precision same as calibrator visibility sensitivity (on
timescale of calibration solution). Improves only with calibrator
strength.

* Calibration accuracy sensitive to departures of calibrator from assumed
structure

— Un-modeled calibrator structure transferred (in inverse) to science target!
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Antenna-based Cross Calibration

* Measured visibilities are formed from a product of antenna-based
signhals. Can we take advantage of this fact?

— e.g.,bandpass...
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Rationale for Antenna-based Calibration

Amp vs. Frequency Phase vs. Frequency

B table: B Antenna='ea04' B table: B Antenna='ea04'
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Antenna-based Cross Calibration

* The net time-dependent E-field signal sampled by antenna j, x(t), is a
combination of the desired signal, s(t,,m), corrupted by a factor J(t,,m)
and integrated over the sky (I, m), and diluted by noise, n(t):

x ()= [J.(t,1,m)s (t,1,m)dldm +n. (t)
sky
=5, (1) * 0, (1)
* x,t)is sampled (complex) voltage provided to the correlator input

* J(tlm) is the product of a series of effects encountered by the
incoming signal
* J(tLm) is an antenna-based complex number

Usually, [n,|>> |s/| (i.e.,noise dominates)
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Correlation of Realistic Signals - |

* The correlation of two realistic (aligned for a specific direction) signals
from different antennas:
<g + n, /g n. />

<x x1>
2 I * 4 * 1 * *
— . + . + . + .
<S‘ S| >At <Si nj>At <n‘ S| >At <ni nj>At

* Noise correlations have zero mean—even if |[n|>> [s/|, the
correlation process isolates desired signals:

— !. 1*
S; SJ. A

=( Ja,sdi,dm,- [37s7dl dm
sky At
* Inintegral,only s(t,,m) from the same directions potentially
correlate (i.e.,when [=[, m=m),so order of integration and
signal product can be reversed:

At

J3,37s,s ddm
sky At
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Correlation of Realistic Signals - 1l

The s; & s; are the common radio source signals, and differ only by the relative arrival
phase at each antenna, which varies with direction. This difference is the Fourier
phase term (to a good approximation), which we factor out:

~

* 27 ‘Iﬂ“v m) g _ i27 ijI+vijmj
si‘ dldm s.e

j i -

At
On the timescale of the averaging, the only meaningful average is of the squared

source signal itself (in each direction), which is just the brightness distribution of the

source I(l,m):
= | JiJ;<‘si (,I,mr> e 7 Gidm
At
sky

i27 (Ivm/

= [3.3710,m)e didm

sky

» Ifall J=1.0,we of course recover the ideal expression:

i27 (Ivm/

= [10,me dldm

sky
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Aside: Auto-correlations and Single Dishes

* The auto-correlation of a signal from a single antenna:

« ~ =
<xi'xi> =<§.'+n./'§.'+n./>
At | | 1 1 At

o)
[ Joflsfam ) (o]

Ky

= o, ra,mydiam +(Jn,[*)

sky
* Thisis an integrated (sky) power measurement plus non-zero-

mean noise

* Desired signal not simply isolated from noise
* Noise usually dominates

* Single dish radio astronomy calibration strategies rely on switching

(differencing) schemes to isolate desired signal from the noise
ﬂ* New Mexico Tech_ —-_ eeeeeeeeeeeeeeeeeeeeee EONSORTIUN Y
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The Scalar Measurement Equation

i27 (Ivm/

obs _— *
v = [3,07100,m)e didm
sky

First, isolate non-direction-dependent effects,and factor them from the integral:

= v € 35 L mye 4 G

sky
* Next, we recognize that over small fields of view, it is possible to assume
J*&=1.0,and we have a relationship between ideal and observedVisibilities:

= €30 1 mye " G

™~
obs __ Vis q vis* true _ *\ 4 true
Voo =9I N =000y

ij i j ij
» Standard calibration of most existing arrays reduces to solving this last equation
for the J;, assuming a visibility model V; for a calibrator

* NB: visibilities corrupted by difference of antenna-based phases, and product of
antenna-based amplitudes
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Solving for the |.

We can write: vJObS J.J V mod =

..and define chi-squared:

— obs __ *\ ; mod 2
=2 N v w

i7j

 ...and minimize chi-squared w.r.t.each |, yielding (iteration):

V_.Obs ) ™~ 5;{2
Ji:2£ ',’md‘]iwii} Zﬁj i,- [§*=oj
j Vij i ‘]i
i7j

i j

* (...which we may be gratified to recognize as a peculiarly weighted
average of the implicit J, contribution to Vebs:)

~
2.
j;t

[J =Z (Ji'
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Solving for J. (cont)

Formal errors: 1
J.
! Z mod J 2 0.2
i j ij, At
J

* Fora ~uniformarray (~same sensitivity on all baselines,~same

calibration magnitude on all antennas) and point-like calibrator:

O
ij,At

O'J_
I e RN

* Calibration error decreases with increasing calibrator strength and
square-root of N . (c.f. baseline-based calibration).
e Other properties of the antenna-based solution:
— Minimal degrees of freedom (N,,,, factors, N,,,(N,..~-1)/2 measurements)

— Net calibration for a baseline involves a phase difference,so absolute
directional information is lost

~

— Closure..
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Antenna-based Calibration and Closure

* Success of synthesis telescopes relies on antenna-based calibration

— Fundamentally,any information that can be factored into antenna-based termes,
could be antenna-based effects,and not source visibility

— For N,,, > 3, source visibility information cannot be entirely obliterated by any
antenna-based calibration

* Observablesindependent of antenna-based calibration:
— Closure phase (3 baselines):

obs obs obs _ true . b true - b true . ‘
¢ij + ¢jk + ¢ki - *ij + ei 9] j ﬁjk + ej gk j ﬁki + gk ei -
_ true true true
- ¢ij +¢ jk + ¢|<i
— Closure amplitude (4 baselines):
obs obs true true true true
Vij Vkl ‘] i‘] jVij ‘] k 'J IVkI — Vij Vkl
obs obs true true true true
Vik le ‘Ji‘]kvik ‘] j'JIVjI Vik le

* Baseline-based calibration formally violates closure!
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Simple Scalar Calibration Example

* Array:
— EVLA D-configuration (Apr 2010)
* Sources:

— Science Target: 3C391 (7 mosaic pointings)

— Near-target calibrator:|1822-0938 (~| | deg from target; unknown flux
density,assumed | Jy)

— Flux Density calibrator: 3C286 (7.747 ]y, essentially unresolved)
* Signals:
— RR correlation only for this illustration (total intensity only)
— One spectral window centeredat 4600 MHz, 128 MHz bandwidth

— 64 observed spectral channels averaged with normalized bandpass
calibration applied (this illustration considers only the time-dependent
‘gain’ calibration)

— (extracted from a continuum polarimetry mosaic observation)
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Views of the Uncalibrated Data

Amp vs. Time Phase vs. Time
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Views of the Uncalibrated Data
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Uncalibrated Images
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Rationale for Antenna-based Calibration

Phase vs. Time

Phase vs. Time
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The Calibration Process

* Solve for antenna-based gain factors for each scan on all calibrators
(Vmod=S for f.d. calibrator; V™= .0 for others) :

V__Obs — G iG }‘Vijmod

1)

* Bootstrap flux density scale by enforcing gain consistency over all
calibrators:

(G, /G, €d cal } =1.0

time ,antennas

* Correctdata (interpolate,as needed):

V"cor — G i—lG ;‘—1Vijobs

J/
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The Antenna-based Calibration Solution

G table: G
ﬂ ' 3 g b 9 °© ' ! E l :
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Time

* Referenceantenna:ea2l (phase=0)
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The Antenna-based Calibration Solution

G table: G
1
200
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eal7 (Y g :
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The Antenna-based Calibration Solution

G table: G G table: Gflx
' g © © 60 e : o o g o © & e o e
<] e o0
<]
e g s s b ol oo e O
" o E a i e o ® e o g '
g ) 3 o @ °
g @ © © o e0 ® o e o o o g E E g é 8 6 g E E !
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0 aap © ? E l ¥ © i E
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- e ® [ ] e ] [ ] ] [ ] L] ® '
40:48.0 12.0 :26: 21 -40: - 31120
Time Time

e 3C286’s gains have correct scale
* Thus,]1822-0938is2.32 ]y (not 1.0 ]y, as assumed)
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Effect of Antenna-based Calibration

. Phase
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Effect of Antenna-based Calibration

Amp vs. Time Phase vs. Time
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Effect of Antenna-based Calibration
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Effect of Antenna-based Calibration
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Calibration Effect on Imaging
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Evaluating Calibration Performance

* Are solutions continuous!?
— Noise-like solutions are just that—noise (beware calibration of pure
noise generates a spurious point source)
— Discontinuities indicate instrumental glitches (interpolate with care)
— Any additional editing required?
* Are calibrator data fully described by antenna-based effects!?
— Phase and amplitude closure errors are the baseline-based residuals

— Are calibrators sufficiently point-like? If not, self-calibrate: model
calibrator visibilities (by imaging, deconvolving and transforming) and re-
solve for calibration; iterate to isolate source structure from calibration

components
* Crystal Brogan’s lecture: “Advanced Calibration” (Wednesday)

* Any evidence of unsampled variation? |s interpolation of solutions
appropriate?!
— Reduce calibration timescale, if SNR permits

Greg Taylor’s lecture:“Error Recognition” (VWednesday)
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Summary of Scalar Example

 Dominant calibration effects are antenna-based
* Minimizes degrees of freedom
* More precise
* Preserves closure

* Permits higher dynamic range safely!

* Point-like calibrators effective
* Flux density bootstrapping
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Generalizations

* Full-polarization Matrix Formalism
* Calibration Effects Factorization
* Calibration Heuristics and ‘Bootstrapping’

ﬁ T
CONSORTIUM
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Full-Polarization Formalism (Matrices!)

* Need dual-polarization basis (p,q) to fully sample the incoming EM wave
front,where p,g = RL (circular basis) or p,g = X,Y (linear basis):

T ) (1) () e oY) [1ve)
PR e B d
i) oo ) D) ) s o olv) Lice)

* Devices can be built to sample these circular (R,L) or linear (X,Y) basis
states in the signal domain (Stokes Vector is defined in “power”
domain)

* Some components of | involve mixing of basis states, so dual-
polarization matrix description desirable or even required for proper
calibration
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Full-Polarization Formalism: Signal Domain

g 05 aaets =
= . E;jc'ifﬁ

* The Jones matrix thus corrupts the vector wavefront signal as follows:

e Substitute:

S| — J§ (sky integrabmitted)

’ (o p—> —
s p B J P—P J a—p Sp
’
Sq | \Jp_)q Jq_>q i Sq |
(- p—> —>
J p pSp +J q qu
\J p_>qsp _|_Jq_)qsq |
* New Mexico Tech ” u”;lw 0 EONSORTIUN Y

57



Full-Polarization Formalism: Correlation - |

* Four correlations are possible from two polarizations. The outer product
represents correlation in the matrix formalism:

o
C.
o]

w

o)
*
o)

— * —
©
\/\/\/\/

* Observed visibilities (note outer product identity):

obs _ ‘ ®‘”*)—_ gigiﬁ() g:g:;—— €®3:§®§

“‘ ﬁ New Mexico [ N
New Mexico Tech o _ CONSORTIUM
SCIENCE - ENGINEERING - RESEARCH - UNIVERSITY The University of New Mexico

58




Full-Polarization Formalism: Correlation - 11

* The outer product for the Jones matrix:

. . PP ap J’_‘Iﬁp qu»p
1,937 = . ) ]@{J ) J

J p—q Jq—>q J*pﬁq J*q—>q
i i ' j

- *5—> — *q—> - *n—> - *q—>

.J.p p.J_p p .J.p PJ_q p J.q pJ_p p J.q pJ_q p\
- *pn—> - *q—> - *n—> - *q—>

IJ_p PyrPa PPy javegred Javegrava I
pP=>q q*p>p P>q 1 *q>p q>q 1*p=>p q=>4q 1 *q>p

Ji Jj Ji Jj Ji Jj Ji Jj J

P~d q*pq P~ q*07q a9 q*pq 9720 q*07>q
J- J. Jo J. Jo 7 J. J°'J.
— J;is a 4x4 Mueller matrix

— This is starting to get ugly.....
— Synthesis array design driven by minimizing off-diagonal terms!
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Full-Polarization Formalism: Correlation - 111

* Andfinally,for fun, expand the correlation of corrupted signals:

— b - I — *
o
~ T~ ~—— ~—
+
()
o
\
o
(&
*
o
\
he
TN~ T —
(V2]
o
w
X%
o]
~ T~ ~—— ~—
_|_
C_l
o
\
o
<_a
'O
\
o
/\/\/\/\
U)
o)
w
— L — * = * -
e
_|_
()
o
2
o
[
*
o)
\
o
P i P N,
w
o
w
*
o]
~ T~ ~—— ~—
N—— .

* UGLY, but we rarely, if ever, need to worry about algebraic detail at
this level---just let this occur “inside” the matrix formalism,and work
with the matrix short-hand notation
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The Matrix Measurement Equation

*  We can now write down the Measurement Equation in matrix notation:

VA H ® ] SI(I m)e = T

— S maps Stokes parameters onto observed basis

* ...and consider how the J. are products of many effects.
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A Dictionary of Calibration Components

* J.contains many components,in principle:
* F = ionospheric effects
* T =tropospheric effects
e P = parallactic angle
e X = linear polarization position angle
* E =antenna voltage pattern
* D = polarization leakage - - s o e =
* G = electronic gain J K BG DE X PT
* B = bandpass response
¢ K= geometric compensation
* M,A = baseline-based corrections

* Order of terms follows signal path (right to left)

* Each term has matrix form of J; with terms embodying its particular
algebra (on- vs. off-diagonal terms, etc.)

* Direction-dependent terms must stay inside FT integral

* ‘Full’ calibration is traditionally a bootstrapping process wherein
relevant terms (usually a minority of above list) are considered in
decreasing order of dominance,relying on approximate separability

R New Meico [N
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lonospheric Effects, F

ie £ in €
IERL — eiA¢ € Qg : IE’ XY — eiA¢ COjS sin j
0 e —sin € cos €

* Theionosphereintroduces a dispersive path-length offset: A o N, lm C-

* More important at lower frequencies (<5 GHz)

* Varies more at solar maximum and at sunrise/sunset, when ionosphere is most
active and variable

* Direction-dependent within wide field-of-view J‘B ] Im 4
* Theionosphereis birefringent:Faraday rotation: g o .

2
| 4
* as high as 20 rad/m? during periods of high solar activity will rotate linear
polarization position angle by € = 50 degrees at 1.4 GHz

* Varies over the array, and with time as line-of-sight magnetic field and electron
density vary, violating the usual assumption of stability in position angle calibration

* Book:Chapter 5,sect.4.3,4.4,9.3;Chapter 6,sect. 6; Chapter 29,sect.3
* Lincoln Greenbhill’s lecture: “Low Frequency Interferometry” (Monday)
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Tropospheric Effects, T

- (t o0 1 0
T = = t
0 t 0 1

* The troposphere causes polarization-independent amplitude and phase
effects due to emission/opacity and refraction, respectively
* Up to 2.3m excess path length at zenith compared to vacuum
* Higher noise contribution, less signal transmission: Lower SNR
* Most important at v > 20 GHz where water vapor and oxygen absorb/emit
» Zenith-angle-dependent (more troposphere path nearer horizon)
* Clouds,weather = variability in phase and opacity; may vary across array
* Woater vapor radiometry (estimate phase from power measurements)

* Phase transfer from low to high frequencies (delay calibration)

* Book:Chapter 5:sect.4.3,4.4;Chapter 28,sect. 3
« ALMA!
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Parallactic Angle, P

F;RL: o 0 _ISXY:[COSZ sin}(]
0o e") —sin ¥ cos X

* Visibility phase variation due to changing orientation of sky in
telescope’s field of view
* Constant for equatorial telescopes
* Varies for alt-az-mounted telescopes:

~ cos Isin h(t)
¥ €_= arctan : :
sin 1 cos 0 —cos Isin 9 cos h(t)

| = latitude, h(t) = hour angle, 9 = declinatioc n

* Rotates the position angle of linearly polarized radiation

* Analytically known, and its variation provides leverage for determining
polarization-dependent effects

* Book: Chapter 6,sect. 2.1
* Michiel Brentjens’ lecture: “Polarization in Interferometry” (today!)
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Linear Polarization Position Angle, X

ZRL = e ™ 0 _)ZXY:(COSAZ sin A}(]
o ™) —sin A¥ cos Ax

* Configuration of optics and electronics causes a linear polarization
position angle offset
* Canbe treated as an offset to the parallactic angle,P

* Calibrated by registration with a strongly polarized source with
known polarization position angle (e.g.,flux density calibrators)

* For circular feeds, this is a phase difference between the R and L
polarizations,which is frequency-dependent (a R-L phase bandpass)

* Forlinear feeds, this is the orientation of the dipoles in the frame of
the telescope

* Michiel Brentjens’ lecture: “Polarizationin Interferometry” (today!)
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AntennaVoltage Pattern, E épq_[Ep(l,m) 0 ]

0 E%(, m)

* Antennas of all designs have direction-dependent gain within field-of-view

* Important when region of interest on sky comparable to or larger than A/D

* Important at lower frequencies where radio source surface density is greater and
wide-field imaging techniques required

* Beam squint: EP and E9 offset, yielding spurious polarization

» Sky rotates within field-of-view for alt-az antennas, so off-axis sources move
through the pattern

* Direction dependence of polarization leakage (D) may be included in E (off-diagonal
terms then non-zero)

* Shape and efficiency of the voltage pattern may change with zenith angle:
‘gain curve’

* Book:Chapters 19,20
* Sanjay Bhatnagar’s lecture: “Wide Field Imaging I’ (Thursday)
Juergen Ott’s lecture: “Wide Field Imaging I’ (Thursday)
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1 d°
d* 1

Polarization Leakage, D 5 =

* Antenna & polarizer are not ideal, so orthogonal polarizations not
perfectly isolated
* Well-designed feeds have d ~ a few percent or less
* A geometric property of the optics design, so frequency-dependent

* For RL systems, total-intensity imaging affected as ~dQ, dU, so only important
at high dynamic range (Q,U,d each ~few %, typically)

* For RL systems, linear polarization imaging affected as ~dl, so almost always
important

* For small arrays (no differential parallactic angle coverage), only relative D
solution is possible from standard linearized solution,so parallel-hands cannot
be corrected absolutely (closure errors)

* Best calibrator:Strong,point-like,observed over large range of
parallactic angle (to separate source polarization from D)

* Book:Chapter 6

Michiel Brentjens’ lecture: “Polarization in Interferometry” (today!)
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“Electronic” Gain, G - (g° o0

qu

* Catch-all for most amplitude and phase effects introduced by antenna
electronics and other generic effects
¢ Most commonly treated calibration component
* Dominates other effects for most standard observations

* Includes scaling from engineering (correlation coefficient) to radio astronomy
units (Jy), by scaling solution amplitudes according to observations of a flux
density calibrator

* Includes any internal system monitoring, like EVLA switched power calibration

» Often also includes tropospheric and (on-axis) ionospheric effects which are
typically difficult to separate uniquely from the electronic response

* Excludes frequency dependent effects (see B)

* Best calibrator:strong,point-like,near science target;observed often
enough to track expected variations

— Also observe a flux density standard

Book: Chapter 5
*New Mex1co Tech ' ". co%gg[yr%ﬁ _
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Bandpass Response, B

E:pq :(b (V) 0 ]
0 b™ (V)

* G-like component describing frequency-dependence of antenna
electronics, etc.
* Filters used to select frequency passband not square
* Optical and electronic reflections introduce ripples across band
* Often assumed time-independent, but not necessarily so

» Typically (but not necessarily) normalized
* ALMA Tsys is a “bandpass”

* Best calibrator:strong, point-like;observed long enough to get
sufficient per-channel SNR, and often enough to track variations

* Book:Chapter 12,sect.2
* David Meier’s lecture:“Analysis of Data Cubes” (VWednesday)
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Geometric Compensation, K K< ={"p O]

0 k

* Must get geometry right for Synthesis Fourier Transform relation to work in
real time

Antenna positions (geodesy)

Source directions (time-dependent in topocenter!) (astrometry)
Clocks

Electronic path-lengths introduce delays (polarization, spw differences)

Longer baselines generally have larger relative geometry errors, especially if clocks are
independent (VLBI)

Importance scales with frequency

* Kis a clock- & geometry-parameterized version of G (see chapter 5,section
2.1,equation 5-3 & chapters 22,23)

* All-sky observations used to isolate geometry parameters

* Book:Chapter 5,sect.2.1; Chapters 22,23
* Matt Lister’s lecture:"Very Long Baseline Interferometry” (VWednesday)
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Non-closing Effects: M, A

* Baseline-based errors which do not decompose into antenna-based
components

— Digital correlators designed to limit such effects to well-understood and
uniform (not dependent on baseline) scaling laws (absorbed in f.d. calibration)

— Simple noise (additive)

— Additional errors can result from averaging in time and frequency over variation
in antenna-based effects and visibilities (practical instruments are finite!)

— Instrumental polarization effects in parallel hands

— Correlated“noise” (e.g., RFl)

— Difficult to distinguish from source structure (visibility) effects

— Geodesy and astrometry observers consider determination of radio source
structure—a baseline-based effect—as a required calibration if antenna positions
are to be determined accurately

— Diagonal 4x4 matrices, M; multiplies, A; adds

m New Mexico _
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Decoupling Calibration Effects

* Multiplicative gain (G) term will soak up many different effects; known
priors should be compensated for separately, especially when direction-
dependent differences (e.g.,between calibrator and target) will limit the

accuracy of calibration transfer:
— Zenith angle-dependent atmospheric opacity, refraction (T,F)
— Zenith angle-dependent gain curve (E)
— Antenna position errors (K)

* Early calibration solves (e.g., G) are always subject to more subtle,
uncorrected effects

— E.g.,instrumental polarization (D), which introduces gain calibration
errors and causes apparent closure errors in parallel-hand correlations

— When possible,iterate and alternate solves to decouple effects...
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The Full Matrix Measurement Equation

* The total general Measurement Equation has the form:

Mg \Zﬁlvm/

obs _
V™ =M ,K,B,G, |D,E,X,P,T,F,Sl ms dldm + A,
sky
* S maps the Stokes vector, |, to the polarization basis of the instrument, all
calibration terms cast in this basis

* Suppressing the direction-dependence (on-axis calibration):

Ve =N K, B, G, B,E, X, PTEN™ + A
* Generally,only a subset of terms are considered,though highest-

dynamic range observations may require more
* Solve for terms in decreasing order of dominance,iterate to isolate

* (Non-trivial direction-dependent solutions involve convolutional
treatment of the visibilities,and is coupled to the imaging and
deconvolution process)
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Solving the Measurement Equation

* Formally,solving for any antenna-based visibility calibration component
is always the same general non-linear fitting problem:

~
~corrected obs __ I * \, corrupted ‘mod
V; —§i®ijij "

J/
Observed and Model visibilities are corrected/corrupted by available
prior calibration solutions
Resulting solution used as prior in subsequent solves, as necessary
Each solution is relative to priors and assumed source model
Iterate sequences,as needed = generalized self-calibration

* Viability and accuracy of the overall calibration depends on isolation of

different effects using proper calibration observations,and appropriate
solving strategies

e Heuristic mnemonics....
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Calibration Heuristics — Spectral Line
Total Intensity Spectral Line (B=bandpass, G=gain):

\,Obs =B GV‘true
|. Preliminary Gain solve on B-calibrator:
Vbbs — GB Vmod

2. Bandpass Solve (using G;) on B-calibrator (then discard Gp):
VObS =B (GB Vmod)

3. Gain solve (using inverse of B) on calibrators:
(B’ Vbbs) — GVmod

4. Flux Density scaling:
G 2 G, (enforce gain consistency) Heuristic notation!

5. Correct with inverted solutions: Rigorous math notation

\/cor = G B’ Vbbs
6. Image!
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Calibration Heuristics — Polarimetry
Polarimetry (B=bandpass, G=gain, D=instr.poln, X=pos.ang.,P=parallactic ang.):
Vebs = B G D X P Ve

|. Preliminary Gain solve on B-calibrator:
Vbbs — GB Vmod

2. Bandpass (B) Solve (using Gg) on B-calibrator (then discard G;):
VObS =B (GB Vmod)

3. Gain (G) solve (using parallactic angle P, inverse of B) on calibrators:
(B’ Vbbs) — G (PVmOd)

4. Instrumental Polarization (D) solve (using P, inverse of G,B) on
instrumental polarization calibrator:

(G’B’ Wbs) = D (PVmod)
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Calibration Heuristics — Polarimetry

5. Polarization position angle solve (using P, inverse of D,G,B) on
position angle calibrator:

(D’G’ B’ Vebs) = X (PVmod)
6. Flux Density scaling:

G 2 G;  (enforce gain consistency)
/. Correct with inverted solutions:

Veor = P XD’ G¢' B Vebs

8. Image!

* To use external priors,e.g.,T (opacity),K (ant. position errors),
E (gaincurve),revise step 3 above as:

3. (B’K’Wbs) =G (EPTVmd)
— andcarryT,K,and E forward to subsequent steps
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New Calibration Challenges (EVLA, ALMA)

* Bandpass Calibration

* Parameterized solutions (narrow-bandwidth, high resolution regime)

* Spectrum of calibrators, incl. structure (wide absolute bandwidth regime)
* ‘Delay-aware’ gain (self-) calibration

* Troposphere and lonosphere introduce time-variable phase effects which
are easily parameterizedin frequency and should be (c.f. merely sampling
the calibration in frequency)

* Frequency-dependent Instrumental Polarization
* Contribution of geometric optics is wavelength-dependent (standing waves)
* Frequency-dependent voltage pattern
* Wide-field voltage pattern accuracy (sidelobes, rotation)
e Direction-dependent components
* E.g,Instrumental Polarization (polarized voltage pattern)
* Couples to the imaging process

* Increased sensitivity: Can implied dynamic range be reached by conventional
calibration and imaging techniques!?
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Summary

* Determining calibration is as important as determining source
structure—can’t have one without the other

* Data examination and editing an important part of calibration

* Calibration dominated by antenna-based effects, permits efficient,
accurate and defensible separation of calibration from astronomical
information (satisfies closure)

* Full calibration formalism algebra-rich,but is modular

* Calibration an iterative process,improving various components in
turn,as needed

* Pointsources are the best calibrators

* Observe calibrators according requirements of calibration
components
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