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Synopsis 

• Why do we have to calibrate? 

• Idealistic formalism  Realistic practice….  data! 

• Editing  

• Fundamental Calibration Principles 

– Practical Calibration Considerations 

– Baseline-based vs.  Antenna-based Calibration 

• Scalar Calibration Example 

• Generalizations 

– Full Polarization 

– A Dictionary of Calibration Effects 

– Calibration Heuristics and ‘Bootstrapping’ 

• New Calibration Challenges 

• Summary 
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Why Calibration and Editing? 

• Synthesis radio telescopes, though well-designed, are not perfect (e.g., 
surface accuracy, receiver noise, polarization purity, gain stability, geometric 
model errors, etc.) 

• Need to accommodate deliberate engineering (e.g., frequency conversion, 
analog/digital electronics, filter bandpass, etc.) 

• Hardware or control software occasionally fails or behaves unpredictably 

• Scheduling/observation errors sometimes occur (e.g., wrong source 
positions) 

• Atmospheric conditions not ideal 

• Radio Frequency Interference (RFI) 

 

    Determining instrumental properties (calibration) 

 is a prerequisite to  

determining radio source properties 



4 

From Idealistic to Realistic 
• Formally, we wish to use our interferometer to obtain the visibility 

function: 

 

 

 

• ….a Fourier transform which we intend to invert to obtain an image of the 
sky: 

 

 

 

– V(u,v) describes the amplitude and phase of 2D sinusoids that add up to 
an image of the sky 

• Amplitude:  “~how concentrated?” 

• Phase:  “~where?” 

• How do we measure V(u,v)? 
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From Idealistic to Realistic 

• In practice, we correlate (multiply & average) the electric field (voltage) 
samples, xi & xj, received at pairs of telescopes (i,j) and processed through 
the observing system: 

 

 

 

 

– xi & xj are mutually delay-compensated for a specific point on the sky 

– Averaging duration is set by the expected timescales for variation of the 
correlation result (~seconds) 

• Jij is an operator characterizing the net effect of the observing process for 
antennas i and j on baseline ij, which we must calibrate 

• Sometimes Jij corrupts the measurement irrevocably, resulting in data that 
must be edited or “flagged” 
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What Is Delivered by a Synthesis Array? 

• An enormous list of complex visibilities!  (Enormous!) 

– At each timestamp (~1-10s intervals):  N(N-1)/2 baselines 

• EVLA:  351baselines 

• VLBA:  45 baselines 

• ALMA:  1225-2016 baselines 

– For each baseline:  up to 64 Spectral Windows (“spws”, “subbands” or “IFs”) 

– For each spectral window:  tens to thousands of channels 

– For each channel: 1, 2, or 4 complex correlations (polarizations) 

• EVLA or VLBA:  RR or LL or (RR,LL), or (RR,RL,LR,LL) 

• ALMA:  XX or YY or (XX,YY) or (XX,XY,YX,YY) 

– With each correlation, a weight value and a flag (T/F) 

– Meta-info: Coordinates, antenna, field, frequency label info  

• Ntotal = Nt x Nbl x Nspw x Nchan x Ncorr visibilities 

– ~few 106 x Nspw x Nchan x Ncorr vis/hour   10s to 100s of GB per observation 
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A Typical Dataset (Polarimetry) 

• Array: 

– EVLA D-configuration (Apr 2010) 

• Sources: 

– Science Target:  3C391 (7 mosaic pointings) 

– Near-target calibrator: J1822-0938 (~11 deg from target) 

– Flux Density calibrator: 3C286 

– Instrumental Polarization Calibrator: 3c84 

• Signals: 

– RR,RL,LR,LL correlations 

– One spectral window centered at 4600 MHz, 128 MHz bandwidth, 64 

channels 
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The Array 
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UV-coverages 

3C286  

Flux Density 
J1822-0938 

Gain Calibrator 

3C391 

Science Target 

3C84 

Instr. Poln Calibrator 
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The Visibility Data   (source colors) 
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The Visibility Data (baseline colors) 
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The Visibility Data (baseline colors) 
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The Visibility Data (baseline colors) 
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A Single Baseline - Amp 
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A Single Baseline - Phase 
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A Single Baseline – 2 scans on 3C286 
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Single Baseline, Single Integration 

Visibility Spectra (4 correlations) 

baseline ea17-ea21 
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Single Baseline, Single Scan 

Visibility Spectra (4 correlations) 

baseline ea17-ea21 
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Single Baseline, Single Scan (time-averaged) 

Visibility Spectra (4 correlations) 

baseline ea17-ea21 
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Data Examination and Editing 
• After observation, initial data examination and editing very important 

– Will observations meet goals for calibration and science requirements? 

• What to edit (much of this is automated): 
– Some real-time flagging occurred during observation (antennas off-source, LO 

out-of-lock, etc.).  Any such bad data left over?  (check operator’s logs) 

– Any persistently ‘dead’ antennas (check operator’s logs) 

– Periods of especially poor weather?  (check operator’s log) 

– Any antennas shadowing others?  Edit such data. 

– Amplitude and phase should be continuously varying—edit outliers 

– Radio Frequency Interference (RFI)? 

• Caution: 
– Be careful editing noise-dominated data. 

– Be conservative: those antennas/timeranges which are bad on calibrators are 
probably bad on weak target sources—edit them 

– Distinguish between bad (hopeless) data and poorly-calibrated data.  E.g., some 
antennas may have significantly different amplitude response which may not be 
fatal—it may only need to be calibrated 

– Choose (phase) reference antenna wisely (ever-present, stable response) 

• Increasing data volumes increasingly demand automated editing algorithms… 
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Editing Example 
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Editing Example 

Scan transitions/setup 

Dead antenna   Slew   
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Editing Example 
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Editing Example 
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Practical Calibration Considerations 
• A priori “calibrations” (provided by the observatory) 

– Antenna positions, earth orientation and rate, clocks 

– Antenna pointing, voltage pattern, gain curve 

– Calibrator coordinates, flux densities, polarization properties 

• Absolute engineering calibration (dBm, K, volts)? 

– Amplitude:  episodic (ALMA) or continuous (EVLA/VLBA) Tsys/switched-
power monitoring to enable calibration to nominal K (or Jy, with antenna 
efficiency information) 

– Phase:  practically impossible (relative antenna phase) 

– Traditionally,  we concentrate instead on ensuring instrumental stability on 
adequate timescales 

• Cross-calibration a better choice 

– Observe strong nearby sources against which calibration (Jij) can be solved, 
and transfer solutions to target observations 

– Choose appropriate calibrators; usually point sources because we can easily 
predict their visibilities  (Amp ~ constant,  phase ~ 0) 

– Choose appropriate timescales for calibration 
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“Absolute” Astronomical Calibrations 
• Flux Density Calibration 

– Radio astronomy flux density scale set according to several 
“constant” radio sources, and planets/moons 

– Use resolved models where appropriate 

• Astrometry 

– Most calibrators come from astrometric catalogs;  sky coordinate 
accuracy of target images tied to that of the calibrators  

– Beware of resolved and evolving structures, and phase transfer 
biases due to troposphere (especially for  VLBI) 

• Linear Polarization Position Angle 

– Usual flux density calibrators also have significant stable linear 
polarization position angle for registration 

 

• Relative calibration solutions (and dynamic range) insensitive to errors 
in these “scaling” parameters 
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Baseline-based Cross-Calibration 

• Simplest, most-obvious calibration approach: measure complex response 

of each baseline on a standard source, and scale science target visibilities 

accordingly 

– “Baseline-based” Calibration: 

• Only option for single baseline “arrays” 

• Calibration precision same as calibrator visibility sensitivity (on 

timescale of calibration solution).  Improves only with calibrator 

strength. 

• Calibration accuracy sensitive to departures of calibrator from assumed 

structure 

– Un-modeled calibrator structure transferred (in inverse) to science target! 
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Antenna-based Cross Calibration 

• Measured visibilities are formed from a product of antenna-based 

signals.  Can we take advantage of this fact? 

– e.g., bandpass… 
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Rationale for Antenna-based Calibration 
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Antenna-based Cross Calibration 

• The net time-dependent E-field signal sampled by antenna i, xi(t), is a 

combination of the desired signal, si(t,l,m), corrupted by a factor Ji(t,l,m) 

and integrated over the sky (l,m), and diluted by noise, ni(t):  

 

 

 

 

• xi(t) is sampled (complex) voltage provided to the correlator input 

• Ji(t,l,m) is the product of a series of effects encountered by the 

incoming signal 

• Ji(t,l,m) is an antenna-based complex number  

• Usually, |ni|>> |si’|  (i.e., noise dominates) 
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• The correlation of two realistic (aligned for a specific direction) signals 
from different antennas: 

 

 
 

• Noise correlations have zero mean—even if |ni|>> |si|, the 
correlation process isolates desired signals: 

 

 

 

 

 

• In integral, only si(t,l,m) from the same directions potentially 
correlate (i.e., when li=lj, mi=mj), so order of integration and 
signal product can be reversed: 
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Correlation of Realistic Signals - I 
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Correlation of Realistic Signals - II 
• The si & sj are the common radio source signals, and differ only by the relative arrival 

phase at each antenna, which varies with direction.  This difference is the Fourier 

phase term (to a good approximation), which we factor out: 

 

 

• On the timescale of the averaging, the only meaningful average is of the squared 

source signal itself (in each direction), which is just the brightness distribution of the 

source I(l,m): 

 

 

 

 

• If all J=1.0, we of course recover the ideal expression: 
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Aside:  Auto-correlations and Single Dishes 
• The auto-correlation of a signal from a single antenna: 

 

 

 

 

 

 

 

 

• This is an integrated (sky) power measurement plus non-zero-

mean noise 

• Desired signal not simply isolated from noise 

• Noise usually dominates 

• Single dish radio astronomy calibration strategies rely on switching 

(differencing) schemes to isolate desired signal from the noise 
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The Scalar Measurement Equation 
 

 

• First, isolate non-direction-dependent effects, and factor them from the integral: 

 

 

 

• Next, we recognize that over small fields of view, it is possible to assume 

Jsky=1.0, and we have a relationship between ideal and observed Visibilities: 

 

 

 

 

• Standard calibration of most existing arrays reduces to solving this last equation 

for the Ji, assuming a visibility model Vij
mod for a calibrator  

• NB:  visibilities corrupted by difference of antenna-based phases, and product of 

antenna-based amplitudes 
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Solving for the  Ji 
• We can write: 

 

• …and define chi-squared: 

 

 

• …and minimize chi-squared w.r.t. each Ji
*, yielding (iteration): 

 

 

 

• (…which we may be gratified to recognize as a peculiarly weighted 

average of the implicit Ji contribution to Vobs:) 
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Solving for Ji (cont) 

• Formal errors: 

 

 

 

• For a ~uniform array (~same sensitivity on all baselines, ~same 
calibration magnitude on all antennas) and point-like calibrator: 

 

 

 

• Calibration error decreases with increasing calibrator strength and 
square-root of Nant (c.f. baseline-based calibration). 

• Other properties of the antenna-based solution: 

– Minimal degrees of freedom (Nant factors, Nant(Nant-1)/2 measurements) 

– Net calibration for a baseline involves a phase difference, so absolute 
directional information is lost 

– Closure… 
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Antenna-based Calibration and Closure 
• Success of synthesis telescopes relies on antenna-based calibration  

– Fundamentally, any information that can be factored into antenna-based terms, 
could be antenna-based effects, and not source visibility 

– For Nant > 3, source visibility information cannot be entirely obliterated by any 
antenna-based calibration 

• Observables independent of antenna-based calibration: 

– Closure phase (3 baselines): 

 

 

 

– Closure amplitude (4 baselines): 

  

 

 

 

 

• Baseline-based calibration formally violates closure! 
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Simple Scalar Calibration Example 

• Array: 

– EVLA D-configuration (Apr 2010) 

• Sources: 

– Science Target:  3C391 (7 mosaic pointings) 

– Near-target calibrator: J1822-0938 (~11 deg from target; unknown flux 

density, assumed 1 Jy) 

– Flux Density calibrator: 3C286  (7.747 Jy, essentially unresolved) 

• Signals: 

– RR correlation only for this illustration (total intensity only) 

– One spectral window centered at 4600 MHz, 128 MHz bandwidth 

– 64 observed spectral channels averaged with normalized bandpass 

calibration applied (this illustration considers only the time-dependent 

‘gain’ calibration) 

– (extracted from a continuum polarimetry mosaic observation) 
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Views of the Uncalibrated Data 
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Views of the Uncalibrated Data 
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Views of the Uncalibrated Data 

P
h
as

e
 

P
h
as

e
 

P
h
as

e
 



42 

Uncalibrated Images 

J1822-0938 

(calibrator) 

3C391 

(science) 
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Rationale for Antenna-based Calibration 
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The Calibration Process 

• Solve for antenna-based gain factors for each scan on all calibrators 

(Vmod=S for f.d. calibrator; Vmod=1.0 for others) : 

 

 

• Bootstrap flux density scale by enforcing gain consistency over all 

calibrators: 

 

 

 

• Correct data (interpolate, as needed): 
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The Antenna-based Calibration Solution 

• Reference antenna: ea21  (phase = 0) 



ea17 

ea12 

ea21 (refant) 
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The Antenna-based Calibration Solution 
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The Antenna-based Calibration Solution 

• 3C286’s gains have correct scale 

• Thus, J1822-0938 is 2.32 Jy (not 1.0 Jy, as assumed) 

3C286 

J1822-0938 

(assuming 1.0 Jy) 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 
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Effect of Antenna-based Calibration 

CALIBRATED 

A
m

p
 

A
m

p
 

A
m

p
 



51 

Effect of Antenna-based Calibration 
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Calibration Effect on Imaging 

J1822-0938 

(calibrator) 

3C391 

(science) 

• Dave Wilner’s lecture “Imaging and Deconvolution” (Wednesday) 



53 

Evaluating Calibration Performance 
• Are solutions continuous? 

– Noise-like solutions are just that—noise (beware calibration of pure 

noise generates a spurious point source) 

– Discontinuities indicate instrumental glitches (interpolate with care) 

– Any additional editing required? 

• Are calibrator data fully described by antenna-based effects? 

– Phase and amplitude closure errors are the baseline-based residuals 

– Are calibrators sufficiently point-like?  If not, self-calibrate:  model 

calibrator visibilities (by imaging, deconvolving and transforming) and re-

solve for calibration; iterate to isolate source structure from calibration 

components 

• Crystal Brogan’s lecture:  “Advanced Calibration” (Wednesday) 

• Any evidence of unsampled variation?  Is interpolation of solutions 

appropriate? 

– Reduce calibration timescale, if SNR permits 

• Greg Taylor’s lecture: “Error Recognition” (Wednesday) 
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Summary of Scalar Example 

• Dominant calibration effects are antenna-based 

• Minimizes degrees of freedom 

• More precise 

• Preserves closure 

• Permits higher dynamic range safely! 

 

• Point-like calibrators effective 

• Flux density bootstrapping 

 



Generalizations 

• Full-polarization Matrix Formalism 

• Calibration Effects Factorization 

• Calibration Heuristics and ‘Bootstrapping’ 

Twelfth Synthesis Imaging Workshop 55 
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Full-Polarization Formalism (Matrices!) 
• Need dual-polarization basis (p,q) to fully sample the incoming EM wave 

front, where p,q = R,L (circular basis) or p,q = X,Y (linear basis): 

 

 

 

 

 

 

• Devices can be built to sample these circular (R,L) or linear (X,Y) basis 

states in the signal domain (Stokes Vector is defined in “power” 

domain) 

• Some components of Ji involve mixing of basis states, so dual-

polarization matrix description desirable or even required for proper 

calibration  
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Full-Polarization Formalism:  Signal Domain 

• Substitute: 

 

 

 

• The Jones matrix thus corrupts the vector wavefront signal as follows:  
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Full-Polarization Formalism: Correlation - I 
• Four correlations are possible from two polarizations.  The outer product 

represents correlation in the matrix formalism: 

 

 

 

 

 

 

 

• Observed visibilities (note outer product identity): 
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Full-Polarization Formalism: Correlation - II 

• The outer product for the Jones matrix: 

 

 

 

 

 

 

 

 

– Jij is a 4x4 Mueller matrix 

– This is starting to get ugly….. 

– Synthesis array design driven by minimizing off-diagonal terms! 
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Full-Polarization Formalism: Correlation - III 

• And finally, for fun, expand the correlation of corrupted signals: 

 

 

 

 

 

 

 

 

 

• UGLY, but we rarely, if ever, need to worry about algebraic detail at 
this level---just let this occur “inside” the matrix formalism, and work 
with the matrix short-hand notation 
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The Matrix Measurement Equation 
• We can now write down the Measurement Equation in matrix notation: 

 

 

 

 

– S maps Stokes parameters onto observed basis 

 

• …and consider how the Ji are products of many effects. 
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A Dictionary of Calibration Components 
• Ji contains many components, in principle: 

• F = ionospheric effects 

• T = tropospheric effects 

• P = parallactic angle 

• X = linear polarization position angle 

• E = antenna voltage pattern 

• D = polarization leakage 

• G = electronic gain 

• B = bandpass response 

• K = geometric compensation 

• M, A = baseline-based corrections 

• Order of terms follows signal path (right to left) 

• Each term has matrix form of Ji with terms embodying its particular 
algebra (on- vs. off-diagonal terms, etc.) 

• Direction-dependent terms must stay inside FT integral 

• ‘Full’ calibration is traditionally a bootstrapping process wherein 
relevant terms (usually a minority of above list) are considered in 
decreasing order of dominance, relying on approximate separability 

iiiiiiiiii
FTPXEDGBKJ
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Ionospheric Effects, F 

• The ionosphere introduces a dispersive path-length offset: 

• More important at lower frequencies (<5 GHz) 

• Varies more at solar maximum and at sunrise/sunset, when ionosphere is most 

active and variable 

• Direction-dependent within wide field-of-view 

• The ionosphere is birefringent: Faraday rotation: 

• as high as 20 rad/m2 during periods of high solar activity will rotate linear 

polarization position angle by  = 50 degrees at 1.4 GHz 

• Varies over the array, and with time as line-of-sight magnetic field and electron 

density vary, violating the usual assumption of stability in position angle calibration 

 

• Book: Chapter 5, sect. 4.3,4.4,9.3; Chapter 6, sect. 6; Chapter 29, sect.3 

• Lincoln Greenhill’s lecture:  “Low Frequency Interferometry” (Monday)  
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Tropospheric Effects, T 

• The troposphere causes polarization-independent amplitude and phase 

effects due to emission/opacity and refraction, respectively 

• Up to 2.3m excess path length at zenith compared to vacuum 

• Higher noise contribution, less signal transmission:  Lower SNR 

• Most important at  > 20 GHz where water vapor and oxygen absorb/emit 

• Zenith-angle-dependent (more troposphere path nearer horizon) 

• Clouds, weather = variability in phase and opacity; may vary across array 

• Water vapor radiometry (estimate phase from power measurements) 

• Phase transfer from low to high frequencies (delay calibration) 

 

• Book: Chapter 5: sect. 4.3,4.4; Chapter 28, sect. 3  

• ALMA! 
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Parallactic Angle, P 

• Visibility phase variation due to changing orientation of sky in 
telescope’s field of view 

• Constant for equatorial telescopes 

• Varies for alt-az-mounted telescopes: 

 

 

 

 

 

• Rotates the position angle of linearly polarized radiation 

• Analytically known, and its variation provides leverage for determining 
polarization-dependent effects 

• Book:  Chapter 6, sect. 2.1 

• Michiel Brentjens’ lecture:  “Polarization in Interferometry” (today!) 
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Linear Polarization Position Angle, X 

• Configuration of optics and electronics causes a linear polarization 

position angle offset 

• Can be treated as an offset to the parallactic angle, P 

• Calibrated by registration with a strongly polarized source with 

known polarization position angle (e.g., flux density calibrators) 

• For circular feeds, this is a phase difference between the R and L 

polarizations, which is frequency-dependent (a R-L phase bandpass) 

• For linear feeds, this is the orientation of the dipoles in the frame of 

the telescope 

• Michiel Brentjens’ lecture:  “Polarization in Interferometry” (today!) 
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Antenna Voltage Pattern, E 

• Antennas of all designs have direction-dependent gain within field-of-view 

• Important when region of interest on sky comparable to or larger than /D 

• Important at lower frequencies where radio source surface density is greater and 

wide-field imaging techniques required 

• Beam squint:  Ep and Eq offset, yielding spurious polarization 

• Sky rotates within field-of-view for alt-az antennas, so off-axis sources move 

through the pattern  

• Direction dependence of polarization leakage (D) may be included in E (off-diagonal 

terms then non-zero) 

• Shape and efficiency of the voltage pattern may change with zenith angle:   

‘gain curve’ 

 

• Book: Chapters 19, 20 

• Sanjay Bhatnagar’s lecture:  “Wide Field Imaging I” (Thursday) 

• Juergen Ott’s lecture:  “Wide Field Imaging II” (Thursday) 
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Polarization Leakage, D 

• Antenna & polarizer are not ideal, so orthogonal polarizations not 

perfectly isolated 

• Well-designed feeds have d ~ a few percent or less 

• A geometric property of the optics design, so frequency-dependent 

• For R,L systems, total-intensity imaging affected as ~dQ, dU, so only important 

at high dynamic range (Q,U,d each ~few %, typically) 

• For R,L systems, linear polarization imaging affected as ~dI, so almost always 

important 

• For small arrays (no differential parallactic angle coverage), only relative D 

solution is possible from standard linearized solution, so parallel-hands cannot 

be corrected absolutely (closure errors) 

• Best calibrator: Strong, point-like, observed over large range of 

parallactic angle (to separate source polarization from D) 

• Book: Chapter 6 

• Michiel Brentjens’ lecture:  “Polarization in Interferometry” (today!) 
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“Electronic” Gain, G 

• Catch-all for most amplitude and phase effects introduced by antenna 

electronics and other generic effects 

• Most commonly treated calibration component 

• Dominates other effects for most standard observations 

• Includes scaling from engineering (correlation coefficient) to radio astronomy 

units (Jy), by scaling solution amplitudes according to observations of a flux 

density calibrator 

• Includes any internal system monitoring, like EVLA switched power calibration 

• Often also includes tropospheric and (on-axis) ionospheric effects which are 

typically difficult to separate uniquely from the electronic response 

• Excludes frequency dependent effects (see B) 

• Best calibrator: strong, point-like, near science target; observed often 

enough to track expected variations 

– Also observe a flux density standard 

 

• Book: Chapter 5 
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Bandpass Response, B 

• G-like component describing frequency-dependence of antenna 

electronics, etc. 

• Filters used to select frequency passband not square 

• Optical and electronic reflections introduce ripples across band 

• Often assumed time-independent, but not necessarily so 

• Typically (but not necessarily) normalized 

• ALMA Tsys is a “bandpass” 

• Best calibrator: strong, point-like; observed long enough to get 

sufficient per-channel SNR, and often enough to track variations 

 

• Book: Chapter 12, sect. 2 

• David Meier’s lecture: “Analysis of Data Cubes” (Wednesday) 
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Geometric Compensation, K 

• Must get geometry right for Synthesis Fourier Transform relation to work in 

real time 

• Antenna positions (geodesy) 

• Source directions (time-dependent in topocenter!) (astrometry) 

• Clocks  

• Electronic path-lengths introduce delays (polarization, spw differences) 

• Longer baselines generally have larger relative geometry errors, especially if clocks are 

independent (VLBI) 

• Importance scales with frequency 

• K is a clock- & geometry-parameterized version of G (see chapter 5, section 

2.1, equation 5-3 & chapters 22, 23) 

• All-sky observations used to isolate geometry parameters 

• Book: Chapter 5, sect. 2.1;  Chapters 22, 23 

• Matt Lister’s lecture: “Very Long Baseline Interferometry” (Wednesday) 
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Non-closing Effects: M, A 

• Baseline-based errors which do not decompose into antenna-based 
components 

– Digital correlators designed to limit such effects to well-understood and 
uniform (not dependent on baseline) scaling laws (absorbed in f.d. calibration) 

– Simple noise (additive) 

– Additional errors can result from averaging in time and frequency over variation 
in antenna-based effects and visibilities (practical instruments are finite!) 

– Instrumental polarization effects in parallel hands  

– Correlated “noise” (e.g., RFI) 

– Difficult to distinguish from source structure (visibility) effects 

– Geodesy and astrometry observers consider determination of radio source 
structure—a baseline-based effect—as a required calibration if antenna positions 
are to be determined accurately 

– Diagonal 4x4 matrices, Mij multiplies, Aij adds 
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Decoupling Calibration Effects 

• Multiplicative gain (G) term will soak up many different effects;  known 
priors should be compensated for separately, especially when direction-
dependent differences (e.g., between calibrator and target) will limit the 
accuracy of calibration transfer: 

– Zenith angle-dependent atmospheric opacity, refraction (T,F) 

– Zenith angle-dependent gain curve (E) 

– Antenna position errors (K) 

 

• Early calibration solves (e.g., G) are always subject to more subtle, 
uncorrected effects  

– E.g., instrumental polarization (D), which introduces gain calibration 
errors and causes apparent closure errors in parallel-hand correlations 

– When possible, iterate and alternate solves to decouple effects… 
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The Full Matrix Measurement Equation 
• The total general Measurement Equation has the form: 

 

 

• S maps the Stokes vector, I, to the polarization basis of the instrument, all 

calibration terms cast in this basis 

• Suppressing the direction-dependence (on-axis calibration): 

 

 

• Generally, only a subset of terms are considered, though highest-

dynamic range observations may require more 

• Solve for terms in decreasing order of dominance, iterate to isolate 

• (Non-trivial direction-dependent solutions involve convolutional 

treatment of the visibilities, and is coupled to the imaging and 

deconvolution process) 
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 Solving the Measurement Equation 

• Formally, solving for any antenna-based visibility calibration component 

is always the same general non-linear fitting problem: 

 

 

– Observed and Model visibilities are corrected/corrupted by available 

prior calibration solutions 

– Resulting solution used as prior in subsequent solves, as necessary 

– Each solution is relative to priors and assumed source model 

– Iterate sequences, as needed  generalized self-calibration 

• Viability and accuracy of the overall calibration depends on isolation of 

different effects using proper calibration observations, and appropriate 

solving strategies 

• Heuristic mnemonics…. 
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Calibration Heuristics – Spectral Line 
Total Intensity Spectral Line (B=bandpass, G=gain):  

Vobs = B G Vtrue 

1. Preliminary Gain solve on B-calibrator:   

Vobs = GB V
mod 

2. Bandpass Solve (using GB) on B-calibrator (then discard GB):   

Vobs = B (GB V
mod) 

3. Gain solve (using inverse of B) on calibrators: 

(B’  Vobs) = G Vmod 

4. Flux Density scaling: 

G  Gf     (enforce gain consistency) 

5. Correct with inverted solutions: 

Vcor = Gf ’ B’  Vobs 

6. Image! 

Heuristic notation! 

Rigorous math notation 

(antenna-basedness,  

subscripts, etc.) omitted. 
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Calibration Heuristics – Polarimetry 
Polarimetry (B=bandpass, G=gain, D=instr. poln, X=pos. ang., P=parallactic ang.):  

Vobs = B G D X P Vtrue 

1. Preliminary Gain solve on B-calibrator:   

Vobs = GB V
mod 

2. Bandpass (B) Solve (using GB) on B-calibrator (then discard GB):   

Vobs = B (GB V
mod) 

3. Gain (G) solve (using parallactic angle P,  inverse of B) on calibrators: 

(B’  Vobs) = G (PVmod) 

4. Instrumental Polarization (D) solve (using P, inverse of G,B) on 
instrumental polarization calibrator: 

 (G’ B’  Vobs) = D (P Vmod) 
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Calibration Heuristics – Polarimetry 
 

5. Polarization position angle solve (using P, inverse of D,G,B) on 
position angle calibrator: 

(D’ G’ B’  Vobs) = X (P Vmod) 

6. Flux Density scaling: 

G  Gf     (enforce gain consistency) 

7. Correct with inverted solutions: 

Vcor = P’ X’ D’ Gf ’ B’  Vobs 

8. Image! 

 

• To use external priors, e.g., T (opacity), K (ant. position errors),          
E (gaincurve), revise step 3 above as: 

3.  (B’ K’  Vobs) = G (E P T Vmod) 

– and carry T, K, and E forward to subsequent steps 
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New Calibration Challenges (EVLA,  ALMA)  
• Bandpass Calibration 

• Parameterized solutions (narrow-bandwidth, high resolution regime) 

• Spectrum of calibrators, incl. structure (wide absolute bandwidth regime) 

• ‘Delay-aware’ gain (self-) calibration 

• Troposphere and Ionosphere introduce time-variable phase effects which 

are easily parameterized in frequency and should be (c.f. merely sampling 

the calibration in frequency) 

• Frequency-dependent Instrumental Polarization 

• Contribution of geometric optics is wavelength-dependent (standing waves) 

• Frequency-dependent voltage pattern 

• Wide-field voltage pattern accuracy (sidelobes, rotation) 

• Direction-dependent components 

• E.g., Instrumental Polarization (polarized voltage pattern) 

• Couples to the imaging process 

• Increased sensitivity:  Can implied dynamic range be reached by conventional 

calibration and imaging techniques?  
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Summary 

• Determining calibration is as important as determining source 

structure—can’t have one without the other 

• Data examination and editing an important part of calibration 

• Calibration dominated by antenna-based effects, permits efficient, 

accurate and defensible separation of calibration from astronomical 

information (satisfies closure) 

• Full calibration formalism algebra-rich, but is modular 

• Calibration an iterative process, improving various components in 

turn, as needed 

• Point sources are the best calibrators 

• Observe calibrators according requirements of calibration 

components 

 


