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 What is the purpose of the correlator?
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e Basic correlator architectures
- XF, FX, hybrid
 Technology
- How do the electronics “work”
 The development process
 JVLA WIDAR correlator

e Now and the future
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Purpose

 To calculate the integrated cross-power response
for each pair of antennas “X” and “Y” in the array
over some integration time “T".

<XY>:%_T[x(t)-y(t)dt

0
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“Visibilities" to Image
E » Processor(s)
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Purpose

e The outputs of the correlator are the visibilities—
spatial Fourier components—for each baseline B
In the u-v plane that are used to build the image.

* The fun begins:

- As number of antennas and bandwidth increases.
Number of baselines is ~N2/2. Bandwidth means higher
performance (speed) electronics.
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Purpose

 The analog signal is quantized—in time and
amplitude—as soon as possible for stability and
to take advantage of “cheap” high-speed digital
electronics.

- Once the signal is “digitized” there are no more
unknown/unguantifiable effects (well, unless something
broke...)
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Simplified signal flow

e STEP #1.:
- Receive and amplify the signal from the antenna.

radio source

X

/

Antenna "X"

Low Moise

very weak Amplifier

signal

Relatively
strong noise
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Simplified signal flow

 What does the signal “look” like?
- Time domain (analog):

A

Voltage




Simplified signal flow

« STEP #2:

- down-convert (mix) and filter the signal...ready for
digital sampling.

radio source

X

/

Antenna “X"

Low Moise

Amplifier Mix/

downconvert

very weak
signal

Filter

[ \—

Relatively

strong noise LO
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Simplified signal flow

e STEP #3:
- guantize (digitize/sample) the signal.

radio source

X

//

Antenna “X"

“Sample/

Low Noise Mix/ quantize/

very weak Amplifier : Filter digitize”
downconvert

signal

=<1
Lo 4

Relatively
strong noise
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Simplified signal flow

 What does the signal look like?

- Time domain (digital):
1111 A

T

Q_

Q-\

—_—
——

0000 >

sample# (time)
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Simplified signal flow

e Sampling:
- Nyquist sampling theorem: must sample at least 2X the

signal bandwidth to obtain all information about the
signal. If less, leads to “aliasing” (confusion).

- With noise input:
- 2-bit: 12% sensitivity loss.
- 3-bit: 3.5% sensitivity loss—JVLA wideband samplers

- 4-bit: 1.5% sensitivity loss—JVLA correlator “internal
samplers”
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Simplified signal flow

o Sampling:
- adding more bits/sample produces diminishing sensitivity
returns for noise input and integrated output.

- When narrowband interference is present, need more bits so
as not to contaminate the spectrum with saturated sampler-
generated harmonics. Get ~6 dB per bit dynamic range for a
pure tone. dB=10log(x); if x is a power value.

- For real-time signals (music/video) need lots of bits to
accurately represent the real-time waveform (e.g. CD ~16-bit
sampling=21% = 65,536 levels)

Brent Carlson, 2012 NRAO Synthesis Imaging Summer School -V 14




Simplified signal flow

e STEP #4.
- Correct for antenna-dependent wavefront delay.

Two steps:

E— T . 1) Pure digital delay to +/-0.5 samples using memory.
* Get up to +/-90 deg phase changes at the upper
| edge of the band...severe decorrelation, therefore
| need:
2) Sub-sample delay to << +/- 0.5 samples. Various
methods, sometimes analog, often digital... JVLA
WIDAR uses a digital method.
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Simplified signal flow

e STEP #b5:
- Cross-correlate and accumulate.

“fringe phase”
e * Must also correct for “fringe phase”
z due to the fact that wavefront delay
compensation occurs at a different
frequency (baseband) than where it

originally occurred (at RF in free space).

Y e \Various correlator methods to be
“Visibilities” to Image .
Processing discussed later...

Delay-corrected
signal from "Y"
antenna

f
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Simplified signal flow

 What does the signal look like?
- Frequency domain (10e6 samples integrated):

Amplitude vs Frequency (bin)
T T T

Frequency (bin)




Simplified signal flow

X |
/ antenna 4_‘_’
correlator

|
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I

Low Noise . quantize/ correction
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Correlator architectures

e There are two basic methods for correlation:

- “XF”: Cross-correlate in the time (tau) domain, then
Fourier transform (after integration) to the frequency
domain. a.k.a. “lag correlator”

- “FX”: Fourier transform in the (real) time domain, then
multiply and integrate in the frequency domain.

“Convolution in one domain is multiplication in the other
domain”
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Correlator architectures

e Hybrid:
- Combination of the two. JVLA WIDAR does this as
does the ALMA correlator.

- Coarse filter into sub-bands (F), XF each sub-band.

- More detalls later.
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Correlator architectures

* XF:

- traditionally simpler to understand+implement—
especially for 1-bit or 2-bit correlators (e.g. 1-bit
correlator multiplier is XOR gate). Important in “earlier
days” because of speed and logic availability.

- O(N_ X Non X Sample rate) multiplies/sec...but, very
simple operations (multiply-accumulate) on few bits.
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Correlator architectures

e FX:

- More complex, many-bit operations (FFT). (Has been)
more difficult to implement/understand.

- O([Ngp X 109 Ngnan + Nani® /2] X sample rate)
multiplies/sec...much more efficient...in principle.

- Problems:

1. Have word-width expansion after FFT: (has been) 1
or 2-bit in, many bits out.

2. How to window the real-time data before FFT?
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Real-time

N\
X(n) —» "t

Xi(m)

each frequency channel is
a time series of samples
each at a sample rate of
M=N/F

One complex MAC

Real-time

N
y(n) — fer

Yi(m)

) ¢ p1 Memory

Memory: one
accumulator for
each frequency

channel
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Correlator architectures
See:

Harris, Dick, Rice, “Digital Receivers and
Transmitters using Polyphase Filterban

kS for

Wireless Communications”, IEEE transactions

on microwave theory and technigues, Vo
No. 4, April 2003.

.91,

...for more detail on poly-phase filterbanks

(great paper!)

f
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Correlator architectures

e Hybrid F-XF
- 1st stage: coarse filterbank.

- Useful as “digital BBC” for frequency-agile sub-band
placement.

- 2"d stage: XF.

- Attractive as an simple+efficient parallel processing method
for wideband signals since no large multiplier operations are
required (all ops with memory and adders).

- JVLA and ALMA correlators built this way (some slight
differences in implementations). Probably the last of this
breed!

f
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Correlator architectures

* The actual signal processing operations are just
one piece of the puzzle when putting a system
together.

 Much of the logic and power in a system Is
consumed by transporting data around,
synchronizing, providing various modes of
operation, error detection and recovery etc.

e Let’'s look “under the hood” of the electronics...
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Technology

e |t all starts with fundamental physics...but moving
up a level or two:

- Transistor “switch”: the FET — Field Effect Transistor.




Technology

 N-MOS: applying a voltage to the Gate opens a
conduction channel between the Drain and

Source. _‘ Q

 P-MOS: applying a voltage to the Gate closes the
conduction channel between the Source and the
Drain.

I

@ B
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+V (5 V)

Vout

Simple N-MOS
: | inverter
—— GND (0V)

Vin =

MOS: Metal Oxide Semi-conductor.

MO is the insulator between the
gate and the conduction channel.
Extremely sensitive to electro-static
discharge (ESD).

When the transistor is ON or OFF, no
current flows from the gate to the
conduction channel (unless it is
blown...)

Current (power) only flows when
changing states, to charge/discharge
the gate capacitance...faster state
changes consumes more power.
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+V (5 V)

CMOS: Complementary Metal Oxide
Semiconductor.

Output changes faster since it is being
driven both high and low.

Vout Small amount of leakage current (power)
when the conduction channel is
switching states.

T

Vin
CMOS inverter

GND (0V)

lll—l—‘f

Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




—

L

J
1

-HifT-l—TTLf-o

1=
o




oo

[Fsrs

[]
;
z

]

| N DIFFUSION
N
|:| POLY D P DIFFUSION

[
. CONTACT | j N-WELL

P‘

Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




b F.A. (Full Adder)

5 ﬁ &
FA. F.A. L‘i
B + 5
s, y A —
bE

1| (=] [=]] 1 -
e " | =D
e, | o
il e

7 L > 4 3

Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




Technology

» Alogic gate “immediately” reflects changes on its
Input to Its output. It can’t store a value.

* A “Flip-Flop” transfers “Data Iin” to the output
“Data out” only on the edge of its clock:

Data in D Q p— Data out
CLOCK S A Flip-flop can therefore store
I a value...a single bit.
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Technology

e |[n digital electronics, pretty much everything is
“synchronous”. I.e. changes occur on the clock
edge all “in step”.

- It's like a production line... the speed of the line is the
clock speed and in each clock cycle each “worker”
(bunch of gates doing some logic function) must get
their step done before the next clock cycle starts.

- As the clock speed increases, the logic “workers” must
go faster to keep up.
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Technology

e Together (and in the millions/billions), Flip-flops and
gates (along with memory cells) form the bulk of all
digital electronics.

» As “feature sizes” (transistors) get smaller, more
gates can be packed on a chip, they run faster, and
more can be done.

- JVLA correlator implemented with 90 nm and 130 nm
devices (c. 2005).

- Industry currently shipping 28 nm devices...20 nm is next...

Brent Carlson, 2012 NRAO Synthesis Imaging Summer School -V 42




Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




Brent Carlson, 2012 NRAO Synthesis Imaging Summer School




Development process

* In logic design, at the “application level”, we don’t (or,
rarely) design explicitly with gates and flip-flops.

 We write HDL — Hardware Description Language
code that describes logic in a high-level fashion.
- And there are higher-level approaches as well...

e Can (optionally) use hierarchical graphical design
tools as well to improve the human’s ability to
understand how it all fits together.
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JVLA WIDAR correlator

e 32 antennas, 8 GHz/polarization (in 2 GHz
chunks 3-bit sampling; alternately 4 x 1 GHz 8-bit
sampling).

« 128 independently tunable digital sub-bands; 128
MHz, 64 MHz, ..., 31.25 kHz BW per sub-band.
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JVLA WIDAR correlator

e Each sub-band can have a different delay center
on the sky, within the antenna primary beam.

« 16,384 to 4 million spectral channels per
baseline...
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JVLA WIDAR correlator

« “Recirculation” provides a squared increase in
spectral resolution with decrease in sub-band
bandwidth. Up to 256X recirculation.

» Agile integration modes: normal, recirculation,
pulsar phase binning, burst mode.

 Able to flexibly tradeoff sub-band bandwidth for
spectral resolution.
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JVLA WIDAR correlator

« High time-resolution output; 10 msec minimum, 1
msec possible with some H/W upgrade.

 Phased-array output—coherently add signals
from all antennas... primarily for VLBI.

2 banks of 2000 phase bins for high time
resolution (as low as ~12 usec for reduced
spectral channels) “stroboscopic” observations of
pulsars.
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JVLA WIDAR correlator

« Coming sometime soon: high time resolution
burst mode for transient detection and high time
resolution imaging.
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Filtered Signal
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Fringe Stop + Eomplex Correlate

Complex Correlator Output

-freq +freq
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Amplitude (dB) vs Frequency (bin)
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Test #7 - Pulsar Spectrum Test (Vela Pulsar)

Test Conditlons:

-2 GHZ" bandwidth, Hanning window. —RED: WIDAR Correlator

-10 x50e6 samples. .

-Initial Quantizer decizion level errors: 1 sigma, 13% BLUE Reference CDI’I"E|ETOI’
-4-bit quantize/re-quantize

Amplitude (dB) vs Frequency (bin)
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Now and the future

« Continued advances in semi-conductor
technology are making correlator systems more
*appliance-like” than ever before.

« Afew “COTS” CPUs can now do what a custom
system used to have (to be engineered) to do.

- The new VLBA “DIFX” correlator Is a “software”
correlator.
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Now and the future
 FPGAs are more and more powerful.

» Latest available have ~3000 “DSP blocks”, 1-2M
logic cells.

-DSP block: 25x18-bit multiplier+adder.

-logic cell: multi-input programmable gates + 4 Flip-Flops.

e Useable 500 MHz clock rates, several tens of
10Gbps and 28Gbps transcelivers...craziness!
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Now and the future

* For any problem size, one has to look at capital vs operating cost
(power) and decide what is the best technology. Certainly:

- CPUs/GPUs for “small” to “medium” jobs. Relatively quick turnaround
time/development effort (don't forget s/w!). Power not such a concern.

- FPGAs for “medium” to “large” jobs (can easily fit the entire VLBA correlator
onto one FPGA now). Power starts to be a concern...consider ASIC migration.

- ASICs for “very large” jobs where operating cost in terms of power is of primary
concern. Probably only the SKA would ever need an ASIC again.

- Poly-phase FX due to availability of large multipliers/adders and relatively
inexpensive high-speed serial links.
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Now and the future

 When comparing implementation concepts/
technologies and flexibility, must also bear in
mind performance requirements and capabilities.

- e.g. a few hundred MHz and a handful of antennas vs
several 10s of GHz and hundreds or thousands of
antennas.
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Now and the future

e Must also bear in mind that a fully operational,

“sha
whic
over

“Wait

Ken-down”, faclility-level system, no matter
N way you cut it has software and testing

nead that takes people and time to get right.

a minute captain while | reprogram the computer to

check for sub-space frequencies...”
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Questions?

Thank-you
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