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● “Clean components” are nothing fundamental.  Just a compact 
representation of the Model Image (CASA holds an Image – not CC)

● What exactly is “loop gain”?

●

● Elements of the Hessian matrix – often the sum of its diagonal 
elements.  In practice, often a constant < 1.0

● Schwarz('78): Deconvolution is iterative constrained     minimization

● Clean constraints: finite support;  MEM constraints: Smoothness 

● Both use the same basis-set (Pixel basis – bad for modeling complex 
emission)

● Clean is a POCS algorithm! (Cornewll, AIPS++ Note #184)

● Imaging performance of deconvolution algorithms...

Followup issues: Deconvolution
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Followup: Residuals for Clean, MEM, 
MS, Asp

 VTrue- VModel

 Id-BIM    Niter ~60K                           50                       ~15K                         ~1 K

ITrue

Imaging & Deconvolution lecture, Summer School, 2006

Future!!
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● van-Cittert Zernike Theorem: Coherence function is a 2D Fourier 
Transform of the Sky Brightness distribution

● Imaging

● (u,v) are implicitly a function of time (HA) and frequency

● Standard continuum imaging corresponds to vector average 
of calibrated data over time and frequency (with the 
appropriate kernel).  However... 

Theory re-cap: Measurement Eq.

V  u ,v ; , t =∫ I  l ,m  e[ ulvm ] dl dm

I  l , m=∫V  u , v ; , t  e− [u l v m] du dv

[
u
v
w ]=c [

.. .. ..

.. f HA , ..

.. .. ..] [
X
Y
Z ]
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● Full ME for calibrated data:

● Visibility explicitly depends on time and frequency

● Imaging without correcting for time- and frequency-
dependence of     locks-in the errors after averaging

● The kernel in general is not even a Fourier transform kernel! 

Theory: Measurement Eq.

V ij  =∫ J ij
S  s ,  , t  I  s ,  e ul vmw 1− l2−m2−1  d s

Data          Primary Beam        Sky     Geometry

s= l ,m , n =l ,m ,1−l 2
−m2

−1: Direction cosins

J ij
S
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● Due to higher sensitivity, modern telescopes are 
sensitivity to emission farther out  → need to image 
wider field of view (FoV) for noise-limited imaging

●      -  What do we mean by wide field imaging

When the ME has significant terms that make it increasingly 
deviate from the Standard ME with distance from the 
pointing/phase center.

● The errors due to these terms scale with distance from the 
phase/pointing center.

● Time and frequency dependence of the PB, Sky, and effects 
of 3D geometry are not accounted for in Standard ME kernel 
                                                                             

Why wide-field imaging

e [u l v mw 1− l2−m2−1 ]

With EVLA @L-Band, VLA sensitive achieved at the location of VLA-PB null!
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Example: JVLA Imaging @ L-Band

EVLA Special Issue, ApJ, 739, L20, 2011
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● Wide-field: Deviation from 2D geometry increase with 
FoV and baseline length.

● W-Term: 2D Fourier transform approximation breaks 
down

Wide-field imaging: W-term

e [u l v mw 1− l2−m2−1 ]
≠2D FT Kernel
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● Full-beam imaging: Antenna Primary Beam (PB) effects 
cannot be ignored

Wide-field imaging: Primary Beam

PB  , t  :Scales with frequency and changes with time
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● Mosaicking: Imaging fields with emission larger than the antenna 
Field-of-View (FoV): 

● For most cases, a straight forward extension of full-beam single-
pointing imaging (linear addition of single pointing case)

● However, pay attention to the next lecture

● The other important PB effect, not included in this lecture is 
corrections for time-varying antenna pointing errors

● Limits mosaic imaging performance
● Solutions: 

● Reference pointing (for single pointing)
● Pointing SelfCal: New possibility, but not yet fully tested

● Talk to me later if you are interested...

Wide-field imaging: Mosaicking & 
Pointing error
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● 2D approximation of the measurement equation (ME) 
breaks down (“The W-term problem”).

● Imaging dynamic range throughout the image is limited 
by deconvolution errors due to the sources away from 
the (phase) center.

The W-Term
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● Antenna Primary Beam (PB) pattern cannot be 
approximated by unity (“Full Beam Imaging”).

● Imaging dynamic range throughout the image is limited 
by the deconvolution errors due to the sources in the 
half-power points and the side lobes.

Primary Beam Effects
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● Imaging emission wider than the Field-of-View (FoV) 
(“Mosaicking”)

● Dominant sources of errors
● Antenna Pointing 

● PB effects: rotation, multiple types of antenna in the array (ALMA)

● Deconvolution errors for extended emission

Mosaicking (see later lectures)

Pointing centers
(usually also the 
pointing phase 
center)
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● Assuming Js
ij
=1 (ignore effects of PB)

● FoV is small:  

Array is co-planar 

● vCZ: 2D Fourier transform works
●

● When FoV or w
ij
 is “large”, data and the image are not related by a 

simple 2D Fourier transform relationship.

The W-Term: Theory

V ij
Obs
 =∫ I  s ,  e

 [ uij l v ij mw ij  1− l 2
−m2

−1 ] d s

w≪umax
2
vmax

2 
l 2m2≪1

max Bmax

[ N lobes D] 2
1 D≡Antenna diameter ;Bmax=Max. baseline

Ref: Chapter 19
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● Phase of the visibilities for direction

● For the interferometer in a plane:

● For the interferometer not in a plane:  

● 2D approximation valid only when: (1) w is small compared 
to u, or (2) 

The W-Term: Geometric interpretation

X

u



X

u
w





=2u l
=2 [u lwn−1 ]

l=sin 
n=cos 
l=sin 

≈0
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● We need to measure...

● We measure... 

● E
1
 is E'

1
 propagated  using Fresnel diffraction 

theory

The W-Term: Optics interpretation

V 12
o
=〈E1

'
u , v , w≠0E2

∗
0,0,0〉

V 12=〈E1u , v , w=0E2
∗0,0,0〉

V 12
o
=∫ I  l , me2 [u12 lv12 m ]e2w12 1−l2

−m2
−1 dl dm

V 12
o
=V 12 u , v , w=0∗G u , v ,w ,where

Gu , v ,w=Fresnel Propagater=FT [e2w 1− l2−m2 ]

 
● A single interferometer is sensitive to multiple Fourier component

●  Concept of redundant baselines is more restrictive than is usually thought!

Ref: IEEE Special topics in SP, Vol. 2, No5, 2008
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Example: No W-Term Correction

● W-term is a phase
error
● Sources move in 
the image in a 
systematic way

● Hermitian but
a “dispersive” effect
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Example: After W-Term Correction
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● Do a 3D inversion of the ME to make a 3D “Image”

● Relate F(l,m,n) to the physical image as

● Interpretation

● Physical emission I(l,m) exists along the surface of a unit 
sphere inside the 3D-Image F(l,m,n)

● Resulting algorithm is not efficient

● Not used very often (read “never used” :-))

Solutions: 3D Imaging

F l ,m ,n=∫V u , v , w e
 [ u ij l v ij mw ij n ] du dv dw

I l ,m= F  l , m ,n 

1−l 2
−m2

l 2
m 2

n2
−1
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● Interpret I(l,m) as emission on the surface of the Celestial Sphere of 
unit radius:  l2+m2+n2=1

● Approximate the celestial sphere by a set of tangent planes – a.k.a. 
“facets” – such that 2D geometry is valid per facet

● Use 2D imaging on each facet

● Re-project and stitch the facet-images to a single 2D plane

● Number of facets required

Solutions: Faceted Imaging

F l ,m , n=∫V u , v , w e
 [ u ij l v ij mw ij n ] dldmdn N Poly= f

2
Bmax


max

=
Bmaxmax

[N lobes D ]2
D≡Antenna diameter;  f=Antenna FoV
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● Since the facet-images are related to the single-plane image by a 
linear co-ordinate transformation, there must exist a equivalent 
operation in the visibility plane.  

          where C is the image domain co-ordinate transform

                     l and u are the image and visibility plane co-ordinates respectively

● Projection error:

● Error same as in image plane faceting!

● Produces a single image (no edge effects)

● Global deconvolution possible (extended emission)

● Use of advanced algorithms for

extended emission possible

● Region definition as in the usual case

Solutions: UV plane equivalent

I C l ∣det C ∣−1V C−1T

u

=sin 11−cos 2≈
1
2
12

2

Available in CASA and possibly in AIPS
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● Function optimization view of deconvolution

●     is the optimal estimator.  Deconvolution is then equivalent to

           minimize: 

● Various minor cycle algorithms differ in  (1) parametrization of P
k
, (2) 

types of constraints, and (3) how the constraints are applied

● Projection algorithm use A different from FT kernel for forward and 
reverse transforms to included DD effects

A small digression: Image deconvolution 
theory

V o=AI oN N  is Gaussian random (in the data domain)

VM
=A IM


2


2
=∣V o

−AIM∣
2

where IM=∑k
Pk ; Pk is the Pixel Model

∂2

∂Pixel Model
≡Dirty Image I i

M=Ii−1
M 2
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● Natural domain for modeling/correcting for antenna-based effects is the Data Domain

● Accessible in Major Cycle

● Natural domain for image-plane (non-antenna based) effects is the Image Domain

● Accessible in Minor Cycle 

A small digression: Structure of imaging 
algorithms

∂2

∂Pixel Model
≡Dirty Image I i

M=Ii−1
M 2

Data/Res. data Dirty Image/Res. Image

Model ImageModel Data
Prediction

Imaging

Obs.Data-Model data

Major Cycle (Data) Minor Cycle (Image)

Update

Ref: Imaging & Deconvolution Basics, Thur. Lecture Series
https://safe.nrao.edu/wiki/pub/Software/Algorithms/WebHome/LectureBasicsIntro.pdf
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● Natural domain for modeling sky:  Image plane

Natural domain for modeling instrumental effects: Data domain

● Projection methods utilize the available data optimally

● Since DD effects are typically also vary with time & frequency, image domain 
based correction are non-optimal (and impossible for many cases)

● Only average quantities are accessible in the image plane 

● Corrections for DD effects cannot be decoupled from Imaging!

Natural domains and optimal algorithm 
design

Image Domain Visibility Domain
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● ME entirely in the visibility domain:

     where E
ij
 represents a direction dependent (DD) effect

● Construct a K
ij
 which models the desired DD effect

● If KT
ij 
E

ij 
~ Constant (Unitary Operator after normalization)

● Use       for making images
● Use       computing model data

● Projection methods use modified forward and reverse transforms to 
iteratively correct for DD effects

● Iterations will converge – if the operator is least at approximately 
unitary

V ij
Obs
=Eij [V

o ]

K ij
T

Forward transform (approximate)

Reverse transform (accurate)

A small digression: Projection algorithms

K ij
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●

● W-Projection                                                     CS-Clean 

(WB) A-Projection                                             MS-Clean

Mosaicking                                                       MT-MFS, MS-MFS

Full imaging algorithms

Data/Res. data Dirty Image/Res. Image

Model ImageModel Data Prediction

Imaging

Obs.Data-Model data

Major Cycle 

Data Domain

Minor Cycle

Image Domain

Update

Images corrected for DD effects
Projection algorithms Image plane algorithms
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● Optics interpretation

●

●

● Size of the Fresnel Zone: 

● If       is unitary (or even approximately so)

GT and G can be used in the forward and inverse

transforms to produce distortion free images

Solutions: W-Projection

V 12
o
=∫ I  l , me2 [u12 lv12 m ]e2w12 1−l2

−m2
−1 dl dm

V o
u , v , w=V u , v , w=0 ∗G u , v ,w ,where

Gu , v ,w=FT [e2w 1− l2−m2 ]

GT G

r f


≈w
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● Optics interpretation

●

● Algorithm

● Model prediction (major cycle) [Residual computation]

● Perform a 2D FFT of the model image (appropriately tapered)

(this is                   ) 

● Evaluate the above convolution equation during de-Gridding to get 

● Compute the Dirty Image (minor cycle) [Deconvolution]

● Use                  on each                 during gridding to evaluate

● Perform a 2D FFT-1 of      

The W-Projection Algorithm

V o
u , v , w=V u , v ,w=0 ∗G u , v ,w

V u , v ,w=0 
V o
u , v , w

GT
u , v , w V o

u , v , w V u , v
V u , v
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● Scaling laws:

● Facet imaging:

● W-Projection:

● Ratio:  

W-Projection: Performance

N Facets
2 NGCF

2
N vis

NWPlanes
2

N GCF
2
N vis

≈NGCF
2 for large number of facets/WPlanes

●In practice 
WProjection 
algorithm is 
about 10x faster
 
●Size of G(u,v,w) 
increases with W
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Examples: 74MHz, before correction

Courtesy: 
K. Golap 
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Examples: W-Projection imaging

Courtesy: 
K. Golap 

Sub-image of
an “outlier” field 
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Examples: 2D Imaging
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Examples: Facet Imaging
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Examples: W-Projection Imaging
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● Ignore the w-term for the moment:

● Some observations:

●       is direction dependent: 

●                 : This is true for most instrumental, atmospheric /ionospheric 
corruptions (all effects that obey “closure relationship”)

● When           and stationary in time (e.g. PB of ideal, identical antennas), it's 
effects can be corrected in the image domain  

Full beam imaging

V ij
Obs
 =∫ J ij

S
 s , , t  I  s ,  e

  u ij l v ij m d s

J
ij
S
=J

i
S
⊗ J

j
S∗

J i
S
=J j

S

I Obs

J s
 s , 

= I  s , 

J ij
S
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● Js
i
 are in general complex (complex Primary Beams!)

● In real life, 

● In real life, Js
i
 vary with time...

More observations...

Cross hand power 
pattern

Gain change at first side lobe due to rotation

Source of time variability 
● Pointing errors
● Geometric distortions

J i
S
≠ J j

S
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●  ... Js
i
 vary with polarization

Polarization dependence

Parallel Hand Pattern: PBRR Cross Hand Pattern: PBRL

FT [ER¿
∗ER ] FT [ER¿

∗EL ]
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Error propagation

 I R
=∑


PSF ∗[ PB I o

]

Azimuthal cuts at 50%, 10% and 1% of 
the Stokes-I error pattern AvgPB - PB(to)
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Examples: Stokes-I and -V imaging

W-Term errors!

Errors due PB
side-lobes?

● 3C147, EVLA,
L-Band

● High DR
“700,000:1”
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Examples: Stokes-V

Stokes-V = IRR-ILL Stokes-V Power pattern
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● Re-cap – the simplified ME

● Re-write it as

● If there exists a function K
ij
 such that KT

ij

 * E
ij
 ~ Constant

● Gridding:

● Imaging:

● Prediction:

●      is the coherence field filter for the baseline i-j   

Theory: Full-beam imaging

V ij
Obs
=∫ J ij

S
 s , , t  I  s , e

  uij l v ij m d s

V ij
Obs=E ij∗[V ]=E i

∗∗E j∗[V
o ] E i :   Antenna Aperture Illumination Pattern

E i=FT [J i
s ]

V ij
G
=K ij

T
∗V ij=K ij

T
∗E ij∗[V

o ]≈ [V o ] ij

FFT [V o ] I d

V ij
G=K ij

T∗V ij
Obs = K ij

T∗E ij∗[V
o ] ≈ [V o ]ij

V ij
M
=K ij∗FFT [ I M ]

Vobs is equal to true visibilities convolved with the correlation of the two antenna
Aperture Illumination patterns. 

K ij
Ref: A&A, 487, 419, 2009 (arXiv:0808.0834)
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Solution: A-Projection algorithm

∣K ij∗E ij∣ in the image domainℜK i
R
:   Antenna Aperture Illumination Pattern
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Stokes-I: Before correction
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Stokes-I: After correction
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Stokes-V: Before correction



13th Synthesis Imaging Workshop, May29-June 5, 2012: S. Bhatnagar

Stokes-V: After correction
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● ... Js
i
 vary with frequency...

WB effects: Frequency dependent PB

V ij
Obs
 =∫ J ij

S
 s , , t  I  s ,  e

  u ij l v ij m d s

PB “Spectral Index”
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● L-band imaging with BW = 1GHz

● FT + MS-MFS: May work for static case

● Requires more Taylor Terms ==> Higher memory footprint

 WB Effects: Frequency dependent PB 

Standard Imaging FT + MT-MFS
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● ... Js
i
 vary with frequency...frequency dependence also varies with time!

WB effects: Frequency dependent PB

V ij
Obs
 =∫ J ij

S
 s , , t  I  s ,  e

  u ij l v ij m d s
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●  A-Projection with MS-MFS: Account for narrow-band PB time variability

● Only time-averaged quantities available in image domain

● Cannot correct for time-varying WB effects

● Require more Taylor Terms (even higher memory footprint)

 WB effects: Frequency dependent PB  

FT + MT-MFS A-Proj. + MT-MFS
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● Construct             such that                      is independent of frequency

 Solution: WB A-Projection  

A 
∗


 PB  PB 
∗


PB  

F
re
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 a
xi

s
A 

∗
 Ao

 

Bhatnagar & Rau, in prep.
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● Example of WB-AWP + MT-MFS (or any other appropriate minor-cycle 
algorithm)

 Solution: WB A-Projection  

A-Proj. + MT-MFS WB A-Proj. + MT-MFS

Bhatnagar & Rau, in prep.
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Examples: Time varying PBs

Simulations for LWA @50MHz
(Masaya Kuniyoshi (LWA/NRAO))

Model for EVLA PB at L-Band
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 Imaging with Aperture-array telescope

● Application of AW-
Projection for imaging with 
Aperture-array

● Using R&D code modified 
for application to LOFAR

Image courtesy: C. Tasse, LOFAR 
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● Interferometry and Synthesis in Radio Astronomy, 2nd Ed.: Thompson, Moran and Swenson

● Synthesis Imaging in Radio Astronomy: II  – The “White Book” 

● W-Projection: IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 2008

● A-Projection:  A&A, 487, 419, 2008 (arXiv:0808.0834)

● Scale sensitive deconvolution of astronomical images: A&A, 426, 747, 2004 (astro-ph/0407225)

● MS-Clean: IEEE Journal of Selected Topics in Signal Processing, Vol.2, No.5,2008

● Advances in Calibration and Imaging in Radio Interferometry: Proc. IEEE, Vol. 97, No. 8, 2008

● Calibration and Imaging challenges at low frequencies: ASP Conf. Series, Vol. 407, 2009

● High Fidelity Imaging of Moderately Resolved Source; PhD Thesis, Briggs, NMT, 1995

● Parametrized Deconvolution for Wide-band Radio Synthesis Imaging; PhD Thesis, Rao Venkata; NMT, 
2010

● http://www.aoc.nrao.edu/~sbhatnag 

● NRAO Algo. R&D Page: https://safe.nrao.edu/wiki/bin/view/Software/Algorithms/WebHome

● Home pages of SKA Calibration and Imaging Workshops (CALIM), 2005, 2006, 2008, 2009  

● Home Pages of: EVLA, ALMA, ATA, LOFAR, ASKAP, SKA, MeerKat
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