Using CASA to Simulate Interferometer Observations

Nuria Marcelino
North American ALMA Science Center
Simulating Interferometer Data

• Take a model image and simulate how it would look if observed by ALMA or the EVLA.
 o Other arrays (e.g., SMA, CARMA, etc.) also included

• Explore the effects of:
 o Number of antennas
 o Antenna configuration
 o Length of observation
 o Thermal noise
 o Phase noise

• Functionality included in CASA via tasks `simobserve` and `simanalyzer` (nee `simdata`).

• CASAguides includes several walkthroughs:
Basic Simulation Workflow

In CASA...

1. **Model Sky Distribution** (FITS, image, components)
2. **simobserve**
3. **Simulated Measurement Set** (calibrated u-v data)
4. **simanalyze**
5. **Simulated Image & Analysis Plots Comparing “Observed”/original image**
Simulation Tasks

- **simobserve** simulates interferometric (and single dish) observations of a source.

- **simanalyze** images and analyzes these simulations.

<table>
<thead>
<tr>
<th>Visualization</th>
<th>Simulation</th>
<th>Single dish</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>clearplot</td>
<td>simobserve</td>
<td>asap_init</td>
<td>browsetable</td>
</tr>
<tr>
<td>imview</td>
<td>simdata</td>
<td>sdbaseline</td>
<td>caltabconvert</td>
</tr>
<tr>
<td>msview</td>
<td>simobserve</td>
<td>sdcal</td>
<td>clearplot</td>
</tr>
<tr>
<td>plotants</td>
<td></td>
<td>sdcoadd</td>
<td>clearstat</td>
</tr>
<tr>
<td>plotcal</td>
<td></td>
<td>sdfit</td>
<td>concat</td>
</tr>
<tr>
<td>plotms</td>
<td></td>
<td>sflag</td>
<td>conjugatevis</td>
</tr>
<tr>
<td>plotuv</td>
<td></td>
<td>sflagmanager</td>
<td>find</td>
</tr>
<tr>
<td>plotxy</td>
<td></td>
<td>sdgrid</td>
<td>help_par.parameter</td>
</tr>
<tr>
<td>viewer</td>
<td></td>
<td>sdimaging</td>
<td>help_taskname</td>
</tr>
<tr>
<td>(plotweather)</td>
<td></td>
<td>sdimprocess</td>
<td>imview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdlist</td>
<td>msview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdmath</td>
<td>plotms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdplot</td>
<td>rmtables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sreduce</td>
<td>startup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdsave</td>
<td>taskhelp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdprocess</td>
<td>tasklist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdspikes</td>
<td>testconcat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdscale</td>
<td>toolhelp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdsmooth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sdpimaging</td>
<td></td>
</tr>
</tbody>
</table>

“tasklist” output
simobserve

- simulates interferometer observations of a source.

```
# simobserve :: mosaic simulation task:
project = 'sim'
# root prefix for output file names
skymodel = ''
# model image to observe
complist = ''
# componentlist to observe
setpointings = True
# integration (sampling) time
integration = '10s'
direction = ''
# "J2000 19h00m00 -40d00m00" or "" to center on model
mmapsizE = [' ', ' ']
# angular size of map or "" to cover model
mtype = 'ALMA'
# hexagonal, square, etc
pointingspac = ''
# spacing in between pointings or "0.25PB" or "" for 0.5 PB

obsnode = 'int'
# observation mode to simulate [int(interferometer)|sd(singledish)|""(none)]
antennalist = 'alma.out10.cfg'
# interferometer antenna position file
refdate = '2012/05/21'
# date of observation - not critical unless concatting simulations
hourangle = 'transit'
# hour angle of observation center e.g. -3:00:00, or "transit"
totaltime = '7200s'
# total time of observation or number of repetitions
caldirection = ''
# pt source calibrator [experimental]
calflux = '1Jy'

thermalnoise = 'Sopapilla'
# add thermal noise: [tsys-atm|tsys-manual|""]
leakage = 0.0
# cross polarization (interferometer only)
graphics = 'both'
# display graphics at each stage to [screen|file|both|none]
verbose = False
# overwrite files starting with $project
overwrite = True
# If true the taskname must be started using simobserve(...)
async = False
```

"inp simobserve" output
CASA Refresher

- **In casapy** type

default simobserve

```python
# simobserve :: mosaic simulation task:
project = 'sim'  # root prefix for output file names
skymodel = ''    # model image to observe
complist = ''    # componentlist to observe
setpointings = True  # integration (sampling) time
integration = '10s'  # "J2000 19h00m00 -40d00m00" or "" to center on model
direction = ''  # angular size of map or "" to cover model
mapsize = ['.', '.']  # hexagonal, square, etc
maptype = 'ALMA'  # spacing in between pointings or "0.25PB" or "" for 0.5 PB
pointingsspacing = ''

obsmode = 'int'  # observation mode to simulate [int(interferometer)|lsd(singledish)|""(none)]
anennalist = 'alma.out10.cfg'  # interferometer antenna position file
refdate = '2012/05/21'  # date of observation - not critical unless concating simulations
hourangle = 'transit'  # hour angle of observation center e.g. -3:00:00, or "transit"
totalltime = '7200s'  # total time of observation or number of repetitions
caldirection = ''  # pt source calibrator [experimental]
calflux = '1Jy'
thermalnoise = 'Sopapilla'  # add thermal noise: [tsys-atm|tsys-manual|"
leakage = 0.0  # cross polarization (interferometer only)
grafics = 'both'  # display graphics at each stage to [screen|file|both|none]
verbose = False  # overwrite files starting with $project
overwrite = True  # If true the taskname must be started using simobserve(...)""
async = False
```

NRAO
CASA Refresher

- inp shows parameter names

```plaintext
# simobserve :: mosaicsimulation task:
project = 'sim' # root prefix for output file names
skymodel = ' ' # model image to observe
complist = ' ' # componentlist to observe
setpointings =
  integration = '10s' # integration (sampling) time
  direction = ['J2000 19h00m00 -40d00m00' or ''] to center on model
  mapsize = [','] # angular size of map or '' to cover model
  maptypes = ['ALMA'] # hexagonal, square, etc
  pointingspacing = '' # spacing in between pointings or '0.25PB' or '' for 0.5 PB

obsmode =
  antennalist = 'alma.out10.cfg' # interferometer antenna position file
  reffdate = 2012/05/21 # date of observation - not critical unless concatting simulations
  hourangle = 'transit' # hour angle of observation center e.g. -3:00:00, or "transit"
  totaltime = '7200s' # total time of observation or number of repetitions
  calldirection = ' ' # pt source calibrator [experimental]

thermalnoise = 'lopapilla' # add thermal noise: [tsys-aml|tsys-manuall'"
  leakage = 0.0 # cross polarization (interferometer only)
  graphics = 'both' # display graphics at each stage to [screen|file|both|none]
  verbose = False # overwrite files starting with $project
  overwrite = True # If true the taskname must be started using simobserve(...)"}
```
CASA Refresher

- `inp` shows current value (change, e.g., by `project = "myproj"`)

```python
# simobserve :: simobserve simulation task:
project = 'sim'  # root prefix for output file names
skymodel = ''    # model image to observe
complist = ''    # componentlist to observe
setpointings = True  # integration (sampling) time
direction = ''    # "J2000 19h00m00 -40d00m00" or "" to center on model
mapsize = [',']  # angular size of map or "" to cover model
maptype = 'ALMA'  # hexagonal, square, etc
pointingspacings = ''  # spacing in between pointings or "0.25PB" or "" for 0.5 PB

# obsnode
antennalist = 'alma.out10.cfg'  # interferometer antenna position file
refdate = '2012/05/21'  # date of observation - not critical unless concating simulations
hourangle = 'transit'  # hour angle of observation center e.g. -3:00:00, or "transit"
totaltime = '72000s'  # total time of observation or number of repetitions
caldirection = ''  # not source calibrator [experimental]
calflux = '1Jy'

# thermalnoise
leakage = 0.0  # cross polarization (interferometer only)

# graphics
verbatim = False  # display graphics at each stage to [screen|file|both|none]
overwrite = True  # overwrite files starting with $project
async = False  # If true the taskname must be started using simobserve(...)"
```

Invalid Value
CASA Refresher

- inp shows brief description

```python
# simobserve :: mosaic simulation task:
project = 'sim'
skymodel = '
complist = '
setpointings = True
integration = '10s'
direction = '
mapsiz = [', ']
maptype = 'ALMA'
pointingspacing =

obsmode = 'int'
antennalist = 'alma.out10.cfg'
refdate = '2012/05/21'
hourangle = 'transit'
totalltime = '7200s'
caldirection =
calflux = '1Jy'

thermalnoise = 'Sopapilla'
leakage = 0.0

graphics = 'both'
verbose = False
overwrite = True
async = False

root prefix for output file names
# model image to observe
# componentlist to observe
# integration (sampling) time
# "J2000 19h00m00.40d00m00" or "" to center on model
# angular size of map or "" to cover model
# hexagonal, square, etc
# spacing in between pointings or "0.25PB" or "" for 0.5 PB
# observation mode to simulate [int(interferometer)|lsd(singledish)]""(none)]
# interferometer antenna position file
# date of observation - not critical unless concatting simulations
# hour angle of observation center e.g. -3:00:00, or "transit"
# total time of observation or number of repetitions
# pt source calibrator [experimental]
# add thermal noise: [tsys-atm|tsys-manual]"
# cross polarization (interferometer only)
# display graphics at each stage to [screen|file|both|none]

overwrite files starting with $project
# If true the taskname must be started using simobserve(...)```
CASA Refresher

• Change values by
  
  \texttt{project = "myproj"}
  
  \texttt{inp}

```python
simobserve :: mosaic simulation task:
project = 'myproj' # root prefix for output file names

complist
setpointings
integration = '10s' # integration (sampling) time
direction = '' # "J2000 15h00m00 -40d00m00" or "" to center on model
mapsize = ['', ''] # angular size of map or "" to cover model
maptype = 'ALMA' # hexagonal, square, etc
pointingspacing = '' # spacing in between pointings or "0.25PB" or "" for 0.5 PB

obsmode
antennalist = 'alma.out10.cfg' # interferometer antenna position file
refdate = '2012/05/21' # date of observation - not critical unless concatting simulations
hourangle = 'transit' # hour angle of observation center e.g. -3:00:00, or "transit"
totalltime = '7200s' # total time of observation or number of repetitions
caldirection = '' # pt source calibrator [experimental]
calflux = '1Jy'

thermalnoise
leakage = 0.0 # add thermal noise; [tsys-atm|itsys-manual|""]
graphics = 'both' # cross polarization (interferometer only)
verbose = False # display graphics at each stage to [screen|file|both|none]
overwrite = True # overwrite files starting with $project
async = False # If true the taskname must be started using simobserve(...)```
When all parameters are set, execute with “go simobserve”

If you get stuck:

- Type “tasklist” to see all tasks
- Type “help taskname” to get help on taskname
- Type “default taskname” to set the default inputs
- Type “inp” to review the inputs of the current task
- Ask!
Basic Simulation Workflow

In CASA...

- Model Sky Distribution (FITS, image, components)
- Simulated Measurement Set (calibrated u-v data)
- Simulated Image & Analysis Plots Comparing “Observed”/original image
What Defines a Simulation?

Model Sky Distribution
(Required)
What does the sky really look like in your field?

Telescope
(Required)
Number of Antennas, Configuration, Diameter

Observation
(Required)
Integration time, scan length, pointing centers

Corruption
(Optional)
Thermal noise, phase noise, polarization leakage
• Model sky distribution as FITS file or “component list”

```
# simobserve :: mosaic simulation task:

# root prefix for output file names
Project = Sim

# model image to observe
skymodel =

# component list to observe
complist =

integration = '10s'
direction =

mapsize = ['','']
maptype = 'ALMA'
pointingspacing =


# integration (sampling) time
# "J2000 19h00m00 -40d00m00" or "" to center (model)
# angular size of map or "" to cover (model)
# hexagonal, square, etc
# spacing in between pointings or "0.25PB" or "" for 0.5 PB

# observation mode to simulate [int(interferometer)|lsd(singledish)|""(none)]
# interferometer antenna position file
# date of observation - not critical unless concatting simulations
# hour angle of observation center e.g. -3:00:00, or "transit"
# total time of observation or number of repetitions
# pt source calibrator [experimental]

# add thermal noise: [tsys-atm|tsys-manual|""]
# cross polarization (interferometer only)
# display graphics at each stage to [screen|file|both|none]
# overwrite files starting with $project
# If true the taskname must be started using simobserve(...)```
simobserve

- Telescope via configuration file.

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>project</td>
<td>'sim'</td>
</tr>
<tr>
<td>skymodel</td>
<td>''</td>
</tr>
<tr>
<td>complist</td>
<td>''</td>
</tr>
<tr>
<td>antennalist</td>
<td>'alma.out10.cfg'</td>
</tr>
<tr>
<td>refdate</td>
<td>'2012/05/21'</td>
</tr>
<tr>
<td>hourangle</td>
<td>'transit'</td>
</tr>
<tr>
<td>totaltime</td>
<td>'7200s'</td>
</tr>
<tr>
<td>caldirection</td>
<td>''</td>
</tr>
<tr>
<td>calflux</td>
<td>'1Jy'</td>
</tr>
<tr>
<td>thermalnoise</td>
<td>'Sopapilla'</td>
</tr>
<tr>
<td>leakage</td>
<td>0.0</td>
</tr>
<tr>
<td>graphics</td>
<td>'both'</td>
</tr>
<tr>
<td>verbose</td>
<td>False</td>
</tr>
<tr>
<td>overwrite</td>
<td>True</td>
</tr>
<tr>
<td>async</td>
<td>False</td>
</tr>
</tbody>
</table>

Telescope (Required)
Number of Antennas, Configuration, Diameters
**Observations defined via** setpointings **and** obsmode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>project</td>
<td>'sim'</td>
</tr>
<tr>
<td>skymodel</td>
<td></td>
</tr>
<tr>
<td>compelit</td>
<td></td>
</tr>
<tr>
<td>setpointings</td>
<td>True</td>
</tr>
<tr>
<td>integration</td>
<td>'10s'</td>
</tr>
<tr>
<td>direction</td>
<td></td>
</tr>
<tr>
<td>mapsize</td>
<td>['', '', '']</td>
</tr>
<tr>
<td>maptype</td>
<td>'ALMA'</td>
</tr>
<tr>
<td>pointingspacing</td>
<td></td>
</tr>
<tr>
<td>obsmode</td>
<td>'int'</td>
</tr>
<tr>
<td>antennalist</td>
<td>'alma.out10.cfg'</td>
</tr>
<tr>
<td>refdate</td>
<td>'2012/05/21'</td>
</tr>
<tr>
<td>hourangle</td>
<td>'transit'</td>
</tr>
<tr>
<td>totaltime</td>
<td>'7200s'</td>
</tr>
<tr>
<td>caldirection</td>
<td></td>
</tr>
<tr>
<td>calflux</td>
<td>'1Jy'</td>
</tr>
<tr>
<td>thermalnoise</td>
<td>'Sopapilla'</td>
</tr>
<tr>
<td>leakage</td>
<td>0.0</td>
</tr>
<tr>
<td>graphics</td>
<td>'both'</td>
</tr>
<tr>
<td>verbose</td>
<td>False</td>
</tr>
<tr>
<td>overwrite</td>
<td>True</td>
</tr>
<tr>
<td>async</td>
<td>False</td>
</tr>
</tbody>
</table>

**Observation**

(Required)

Integration time, scan length, pointing centers
• Corruption with thermalnoise & toolkit

```plaintext
simobserve :: mosaic simulation task:
project = 'sim'
skymodel = '
complist = '
setpointings = True
integration = '10s'
direction = '
mapsize = ['','']
maptype = 'ALMA'
pointingspacing =

obsmode = 'int'
antennalist = 'alma.out10.cfg'
refdate = '2012/05/21'
hourangle = 'transit'
toaltime = '7200s'
caldirection =
calflux = '1Jy'

thermalnoise = 'Sopapilla'
leakage = 0.0
graphics = 'both'
verbose = False
overwrite = True
async = False

root prefix for output file names
model image to observe
componentlist to observe
integration (sampling) time
"J2000 19h00m00 -40d00m00" or "" to center on model
angular size of map or "" to cover model
hexagonal, square, etc
spacing in between pointings or "0.25PB" or "" for 0.5 PB
observation mode to simulate [int(interferometer)|sd(singledish)|""(none)]
interferometer antenna position file
date of observation - not critical unless concatting simulations
hour angle of observation center e.g. -3:00:00, or "transit"
total time of observation or number of repetitions
pt source calibrator [experimental]
add thermal noise: [tsys-atm|tsys-manual|"
cross polarization (interferometer only)
display graphics at each stage to [screen|file|both|none]
overwrite files starting with $project
If true the taskname must be started using -python
```

Corruption (Optional)

Thermal noise, phase noise, polarization leakage
• Model sky distribution as FITS file or “component list”

```python
simobserve :: mosaic simulation task:
root prefix for output file names
skymodel = ''
model image to observe
complist = ''
component list to observe
integration = '10s'
direction = ''
mapsizex = ['', ']
gap = ['ALMA']
pointingspacing = ''

obsmode = 'int'
antennalist = 'alma.out10.cfg'
reftype = '2012/05/21'
hourangle = 'transit'
totalltime = '7200s'
calcdirection = ''
calflux = '1Jy'

thermalnoise = 'Sopapilla'
leakage = 0.0
gradients = 'both'
verbose = False
overwrite = True
async = False
```

What does the sky really look like in your field?
Input Sky Model

• Model sky distribution as FITS file. *simobserve* needs:

  o Coordinates
  o Brightness units
  o Pixel scale (angular and spectral)
  o Polarization*

• These may be specified in your FITS header or supplied/over-written by *simobserve*.

```python
skymodel = '30dor.fits'

inbright = ...
indirection = ...
incell = ...
incenter = ...
inwidth = ...

complist = ...
```

# model image to observe
# scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"
# set new direction e.g. "J2000 19h00m00 -40d00m00"
# set new cell/pixel size e.g. "0.1arcsec"
# set new frequency of center channel e.g. "89GHz" (required even for 2D model)
# set new channel width e.g. "10MHz" (required even for 2D model)

# componentlist to observe
Input Sky Model

• Alternatively, supply a Gaussian “component list.” Example at:


```
skymodel = '30dor.fits'
inbright =
indirection =
incell =
incenter =
inwidth =
```

```
modelimage = '30dor.fits'
model image to observe
scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"
set new direction e.g. "J2000 19h00m00 -40d00m00"
set new cell/pixel size e.g. "0.1arcsec"
set new frequency of center channel e.g. "89GHz" (required even for 2D model)
set new channel width e.g. "10MHz" (required even for 2D model)
compoentlist to observe
```

Simulation Guide Component Lists (CASA 3.3)

```
Simulating Observations in CASA
This guide is applicable to CASA version 3.3.
To create a script of the Python code on this page see Extracting scripts from these tutorials.

Contents
1 Explanation of the guide
2 Getting Started
3 CASA Basics
4 Making a Simple FITS Image
5 Simulating Observations with a FITS Image and a Component List
6 Simulating Observations with Just a Component List
```
Simple Example

- Simulate observing 1mm dust continuum in a 30-Doradus (LMC)-like region at the distance of M31/M33 (800 kpc).

- We have a near-IR image of 30 Doradus, will need to:
  
  o Scale the brightness and observing frequency
  
  o Adjust the pixel scale (move it from 50-800 kpc)
  
  o Set a new position
  
  o Define the observations
    INTEGRATION TIME, TELESCOPE, ETC.
Simple Example

- **inbright** = “0.6mJy/pixel”
  
  \textbf{REQUIRES SPECTRAL MODEL/OTHER KNOWLEDGE TO ESTIMATE (SCIENCE!)}

- **Indirection** = “J2000 10h00m00s -40d00m00s”

- **incell** = “0.15arcsec”
  
  \textbf{NATIVE CELL SIZE = 2.3”, MOVING FROM 50 KPC TO 800 KPC SCALE BY 50/800}

- **incenter** = “230GHz”, **inwidth** = “2GHz”
  
  \textbf{NEED TO SUPPLY OBSERVING FREQUENCY & BANDWIDTH (HERE 1MM DUST CONTINUUM)}
Simple Example

- **inbright** = “0.6mJy/pixel”
  
  **REQUIRES SPECTRAL MODEL/OTHER KNOWLEDGE TO ESTIMATE (SCIENCE!)**

- **Indirection** = “J2000 10h00m00s -40d00m00s”

- **incell** = “0.15arcsec”
  
  **NATIVE CELL SIZE = 2.3”, MOVING FROM 50 KPC TO 800 KPC SCALE BY 50/800**

- **incenter** = “230GHz”, **inwidth** = “2GHz”
  
  **NEED TO SUPPLY OBSERVING FREQUENCY & BANDWIDTH (HERE 1MM DUST CONTINUUM)**
• Telescope via configuration file.

```
simobserve :: mosaic simulation task:
project = 'sim'
skymodel = ''
complist = ''
setpointings = True
integration = '10s'
direction = ''
mapsizex = [' ', ' ']
maptype = 'ALMA'
pointraster = ''
pointingspacing =

dsource = Inc
antennalist = 'alma.out10.cfg'
refdate = '2012/05/21'
hourangle = 'transit'
totaltime = '7200s'
calcdirection =
calflux = '1Jy'

thermalnoise = 'Sopapilla'
leakage = 0.0
graphics = 'both'
verbose = False
overwrite = True
async = False

root prefix for output file names
model image to observe
componentlist to observe
integration (sampling) time
"J2000 19h00m00.0-40d00m00.0" or "" to center on model
angular size of map or "" to cover model
hexagonal, square, etc
spacing in between pointings or "0.25PB" or "" for 0.5 PB
observation mode to simulate [int(interferometer)lsd(singledish)|""(none)]
interferometer antenna position file
date of observation - not critical unless concating simulations
hour angle of observation center e.g. -3:00:00, or "transit"
total time of observation or number of repetitions
pt source calibrator [experimental]
add thermal noise: [tsys-atm|tsys-manual|""]
cross polarization (interferometer only)
display graphics at each stage to [screen|file|both|none]
overwrite files starting with $project
If true the taskname must be started using simobserve(...)```
Configuration Files

- Define telescope array for `simobserve`.

Config Files in CASA Already
ALMA, EVLA, CARMA, SMA, etc.

Example Config File: ALMA Cycle 1 ACA

```
# observatory=ACA
# coordsys=LOC (local tangent plane)
# ACA-9-02
# x y z diam pad#
-47.99531371 -564.8585951 -2.318302577 7. J501
-35.89239576 -569.6206755 -2.318648465 7. J504
-65.31846157 -560.7014943 -2.320087842 7. J505
-63.03702802 -574.7165969 -2.320317857 7. J506
-56.9451361 -560.096901 -2.312796311 7. J507
-49.2177138 -555.3091122 -2.314469317 7. J508
```

```
x y z diameter name
```
Configuration Files

• Pick an intermediate-extent full-ALMA configuration
Observations defined via **setpointings** and **obsmode**

```
# simobserve: mosaic simulation task:
project = 'sim'
skymodel = ''
comlist = ''

setpointings = True
  integration = '10s'
  direction = ['','']
  mapsize = ['ALMA']
  mpttype = ['ALMA']
  pointingspacing = ''

obsmode = 'int'
  antennalist = 'alma.out10.cfg'
  refdate = '2012/05/21'
  hourangle = 'transit'
  totaltime = '7200s'
  caldirection = ''
  calflux = '1Jy'

thermalnoise = 'Sopapilla'
  leakage = 0.0
  graphics = 'both'
  verbose = False
  overwrite = True
  async = False
```

Observation (Required)

Integration time, scan length, pointing centers
setpointings

- **setpointings** dictates field, integration time, mosaic

```python
setpointings = True
integration = '600s'
direction = ''
mapsiz = ['', ']
maptype = 'ALMA'
pointingspacing = ''
```

integration (sampling) time
"J2000 19h00m00 -40d00m00" or "" to center on model
angular size of map or "" to cover model
hexagonal, square, etc
spacing in between pointings or "0.25PB" or "" for 0.5 PB

- **integration** sets data averaging (and field visit) time
HERE AVERAGING 600S (10M) ENSURES A QUICK INITIAL EXECUTION

- **direction** sets field or map center

- **mapsizemaptypepointingspacing** define a mosaic
BY DEFAULT IT WILL COVER THE MODEL, HERE THAT MEANS A 9-POINT MOSAIC
obsmode

- obsmode sets total time, date, observing sequence

```python
obsmode =
    'int'
    'alma.out10.cfg'
    '2012/05/21'
    'transit'
    '7200s'
    ''
    '1Jy'
```

- totaltime sets total observation direction
 HERE 7200s IS A TYPICAL ALMA OBSERVATION DURATION

- Optionally specify the date, LST, and a calibrator sequence.

 go simobserve
 SIMOBSERVE CREATES A MEASUREMENT SET (MS) IN
 projectname/projectname.ms
• **`simobserve` outputs diagnostic plots to project directory**

 TEXT FILES SHOW THE LOCATION OF POINTING CENTERS (OR `LISTOBS`)
- Corruption with **thermal noise & toolkit**

```plaintext
# simobserve :: mosaic simulation task:
project = 'sim'
skymodel = ''
complist = ''
setpointings = True
    integration = '10s'
    direction = ''
    mapsize = [',', ']
    maptype = 'ALMA'
    pointingsspacing =
obsmode = 'int'
    antennalist = 'alma.out10.cfg'
    refdate = '2012/05/21'
    hourangle = 'transit'
    totaltime = '7200s'
    caldirection = ''
    calflux = '1Jy'

thermalnoise = 'Sopapilla'
    leakage = 0.0
    graphics = 'both'
    verbose = False
    overwrite = True
    async = False
```

Corruption (Optional)
- Thermal noise, phase noise, polarization leakage
Multiple sets of observations

- One can simulate multiple sets of observations with multiple calls to simobserve
 - Simulate combining data from compact and extended arrays
 - Simulate combining data from interferometers and single dish telescopes
- The CLEAN task can take multiple measurement sets to combine interferometric observations
- The FEATHER task can combine single dish and interferometric observations
thermal noise

- Set observing conditions to add random noise to image

- See CASA guides and toolkit for other ways to corrupt data. E.G., PHASE NOISE

- We will make a noisy and a not-noisy version to compare.

 - MAKE SURE TO SHOW THIS, OR NOT SAY IT

```bash
go simobserve
SIMOBSERVE CREATES A MEASUREMENT SET (MS) IN projectname/projectname.ms```

NRAO
Basic Simulation Workflow

In CASA...

1. **Model Sky Distribution** (FITS, image, components)
2. **simobserve**
3. **Simulated Measurement Set** (calibrated u-v data)
4. **simanalyze**
5. **Simulated Image & Analysis Plots Comparing “Observed”/original image**
simanalyze

- Image and analyze simobserve output

CASA <0>: inp simanalyze
--------> inp(simanalyze)
# simanalyze :: image and analyze simulated datasets
project = 'sim'  # root prefix for output file names
image = True  # (re)image $project.*.ms to $project.image
    vis = 'default'  # Measurement Set(s) to image
    modelimage = ''  # prior image to use in clean e.g. existing single dish image
    imsize = 0  # output image size in pixels (x,y) or 0 to match model
    imdirection = ''  # set output image direction, (otherwise center on the model)
    cell = ''  # cell size with units or '' to equal model
    niter = 500  # maximum number of iterations (0 for dirty image)
    threshold = '0.1mJy'  # flux level (+units) to stop cleaning
    weighting = 'natural'  # weighting to apply to visibilities
    mask = []  # Cleanbox(es), mask image(s), region(s), or a level
    outertaper = []  # uv-taper on outer baselines in uv-plane
    stokes = 'I'  # Stokes params to image

analyze = False  # (only first 6 selected outputs will be displayed)
geraphics = 'both'  # display graphics at each stage to [screen\file\both\none]
verbose = False  # overwrite files starting with $project
overwrite = True  # If true the taskname must be started using simanalyze(...)
• Grid, invert, and CLEAN the simulated data set.

• Similar but reduced options compared to CLEAN. **Defaults are “smart”, informed by the model.**

• You can also image the simulated observations with CLEAN. **They are a normal CASA measurement set for all purposes.**
Output files can be examined with the CASA viewer. In CASA 3.4 these live in `projectname/projectname.image`.
analyze

- Create diagnostic plots based on `simobserve` and `image`

<table>
<thead>
<tr>
<th>analyze</th>
<th>=</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>showuv</td>
<td>=</td>
<td>True</td>
</tr>
<tr>
<td>showpsf</td>
<td>=</td>
<td>True</td>
</tr>
<tr>
<td>showmodel</td>
<td>=</td>
<td>True</td>
</tr>
<tr>
<td>showconvolved</td>
<td>=</td>
<td>False</td>
</tr>
<tr>
<td>showclean</td>
<td>=</td>
<td>True</td>
</tr>
<tr>
<td>showresidual</td>
<td>=</td>
<td>False</td>
</tr>
<tr>
<td>showdifference</td>
<td>=</td>
<td>True</td>
</tr>
<tr>
<td>showfidelity</td>
<td>=</td>
<td>True</td>
</tr>
</tbody>
</table>

# (only first 6 selected outputs will be displayed)
# display uv coverage
# display synthesized (dirty) beam (ignored in single dish simulation)
# display sky model at original resolution
# display sky model convolved with output beam
# display the synthesized image
# display the clean residual image (ignored in single dish simulation)
# display difference image
# display fidelity

- Pick up to 6 of these.
analyze

• Create diagnostic plots based on `simobserve` and `image`
• Create diagnostic plots based on `simobserve` and `image`
Try It Yourself!

- Simulate one of the suite of model images at http://casaguides.nrao.edu/index.php?title=Sim_Inputs