Using CASA to Simulate Interferometer Observations

Nuria Marcelino North American ALMA Science Center

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Simulating Interferometer Data

- Take a model image and simulate how it would look if observed by ALMA or the EVLA.
 - Other arrays (e.g., SMA, CARMA, etc.) also included
- Explore the effects of:
 - Number of antennas
 - Antenna configuration
 - Length of observation
 - o Thermal noise
 - Phase noise
- Functionality included in CASA via tasks simobserve and simanalyze (nee simdata).
- CASAguides includes several walkthroughs: <u>http://casaguides.nrao.edu/index.php?title=Simulating_Observations_in_CASA</u>

Basic Simulation Workflow

NRAC

•

Simulation Tasks

- simobserve simulates interferometric (and single dish)observations of a source.
- simanalyze images and

'isualization	Simulation	Single dish	Utility
learplot mview sview lotants lotcal lotms lotuv lotxy iewer plotweather)	simanalyze simdata simobserve	asap_init sdbaseline sdcal sdcoadd sdfit sdflag sdflagmanager sdgrid sdimaging sdimprocess sdlist sdmath sdplot sdreduce sdsave sdsave sdscale sdsmooth sdstat	browsetable caltabconvert clearplot clearstat concat conjugatevis find help par.parameter help taskname imview msview plotms rmtables startup taskhelp tasklist testconcat toolhelp
ist" outo	ut	sdtpimaging	

"tasklist" output

• simulates interferometer observations of a source.

<pre># simobserve :: mo project skymodel complist setpointings integration direction mapsize maptype pointingspacin</pre>	saic simulation task = 'sim' = '' = True = '10s' = '', ''] = 'ALMA' g = ''	<pre># root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to center on model # angular size of map or "" to cover model # hexagonal, square, etc # spacing in between pointings or "0.25PB" or "" for 0.5 PB</pre>
obsmode antennalist refdate hourangle totaltime caldirection calflux	<pre>= 'int' = 'alma.out10.cfg' = '2012/05/21' = 'transit' = '7200s' = '' = '1Jy'</pre>	<pre># observation mode to simulate [int(interferometer) sd(singledish) ""(none)] # interferometer antenna position file # date of observation - not critical unless concatting simulations # hour angle of observation center e.g3:00:00, or "transit" # total time of observation or number of repetitions # pt source calibrator [experimental]</pre>
thermalnoise leakage graphics verbose overwrite async	= 'Sopapilla' = 0.0 = 'both' = False = True = False	<pre># add thermal noise: [tsys-atmltsys-manuall""] # cross polarization (interferometer only) # display graphics at each stage to [screen file both none] # overwrite files starting with \$project # If true the taskname must be started using simobserve()</pre>

"inp simobserve" output

• In casapy type default simobserve inp simobserve

<pre># simobserve :: mo project skymodel complist setpointings integration direction mapsize maptype pointingspacin</pre>	osai = = = = = = 9 =	c simulation task 'sim' '' True '10s' '' ['', ''] 'ALMA'	;; # # # # # #	root prefix for output file names model image to observe componentlist to observe integration (sampling) time "J2000 19h00m00 -40d00m00" or "" to center on model angular size of map or "" to cover model hexagonal, square, etc spacing in between pointings or "0.25PB" or "" for 0.5 PB
obsmode antennalist refdate hourangle totaltime caldirection calflux		'int' 'alma.out10.cfg' '2012/05/21' 'transit' '7200s' '1Jy'	# # # #	observation mode to simulate [int(interferometer) sd(singledish) ""(none)] interferometer antenna position file date of observation - not critical unless concatting simulations hour angle of observation center e.g3:00:00, or "transit" total time of observation or number of repetitions pt source calibrator [experimental]
thermalnoise leakage graphics verbose overwrite async	= = = =	'Sopapilla' 0.0 'both' False True False	# # #	add thermal noise: [tsys-atmltsys-manuall""] cross polarization (interferometer only) display graphics at each stage to [screen file both none] overwrite files starting with \$project If true the taskname must be started using simobserve()

• inp shows parameter names

(currently expanded)

• inp shows current value (change, e.g., by project = "myproj")

<pre># simobserve :: project skymodel complist setpointings integration direction mapsize maptype pointingspace</pre>	<pre>saic simulation '</pre>	task: # # # # #	root prefix for output file names model image to observe componentlist to observe "J2000 19h00m00 -40d00m00" or "" to center on model angular size of map or "" to cover model hexagonal, square, etc spacing in between pointings or "0,25PB" or "" for 0,5 PB
obsmode antennalist refdate hourangle totaltime caldirection calflux	= 'int' = 'alma.out10.c = '2012/05/21' = 'transit' = '7200s' = '' = '1Jy'	# # # #	observation mode to simulate [int(interferometer) sd(singledish) ""(none)] interferometer antenna position file date of observation - not critical unless concatting simulations hour angle of observation center e.g3:00:00, or "transit" total time of observation or number of repetitions pt source calibrator [experimental]
thermalnoise leakage graphics verbose overwrite async	= 'Sopapilla' = 0,0 = 'both' = False = True = False		add thermal noise: [tsys-atmltsys-manuall""] cross polarization (interferometer only) display graphics at each stage to [screen file both none] verwrite files starting with \$project If true the taskname must be started using simobserve()

• inp shows brief description

<pre># simobserve :: mo project skymodel complist setpointings integration direction mapsize maptype pointingspacir</pre>	<pre>bsaic simulation task = 'sim' = '' = '' = True = '10s' = '' = ['', ''] = 'ALMA' ng = ''</pre>	<pre>c: root prefix for output file names model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to center on model # angular size of map or "" to cover model # angular size of map or "" to cover model # hexagonal, square, etc # spacing in between pointings or "0,25PB" or "" for 0,5 PB</pre>
obsmode antennalist refdate hourangle totaltime caldirection calflux	= 'int' = 'alma.out10.cfg' = '2012/05/21' = 'transit' = '7200s' = '' = '1Jy'	<pre># observation mode to simulate [int(interferometer) sd(singledish) ""(none)] # interferometer antenna position file # date of observation - not critical unless concatting simulations # hour angle of observation center e.g3:00:00, or "transit" # total time of observation or number of repetitions # pt source calibrator [experimental]</pre>
thermalnoise leakage graphics verbose overwrite async	= 'Sopapilla' = 0.0 = 'both' = False = True = False	 add thermal noise: [tsys-atmltsys-manual!""] cross polarization (interferometer only) display graphics at each stage to [screen!file!both!none] overwrite files starting with \$project If true the taskname must be started using simobserve()

Change values by

project	=	"myproj"
inp		

ŧ simob ⊳roject	oserve :: mo	sai =	c simulation task 'myproj'	:: #	root prefix for output file names
complist setpoint int dir map map poi	i ngs egration ection size type ntingspacin	= = = = = = = = = = = = = = = = = = = =	True '10s' '' ['', ''] 'ALMA'	# # # #	componentlist to observe integration (sampling) time "J2000 19h00m00 -40d00m00" or "" to cent angular size of map or "" to cover model hexagonal, square, etc spacing in between pointings or "0,25PB"
obsmode ant ref hou tot cal cal	ennalist date mangle altime direction flux		'int' 'alma.out10.cfg' '2012/05/21' 'transit' '7200s' '1Jy'	# # # #	observation mode to simulate [int(interf interferometer antenna position file date of observation - not critical unles hour angle of observation center e.g3 total time of observation or number of r pt source calibrator [experimental]
thermaln leakage graphics verbose overwrit async	ioise : .e		0.0 'both' False True False	# # # #	add thermal noise: [tsys-atmltsys-manual cross polarization (interferometer only) display graphics at each stage to [scree overwrite files starting with \$project If true the taskname must be started usi

- When all parameters are set, execute with "go simobserve"
- If you get stuck:
 - o Type "tasklist" to see all tasks
 - o Type "help taskname" to get help on taskname
 - o Type "default taskname" to set the default inputs
 - o Type "inp" to review the inputs of the current task
 - \circ Ask!

Basic Simulation Workflow

What Defines a Simulation?

Model Sky Distribution (Required)

What does the sky really look like in your field?

Telescope (Required)

Number of Antennas, Configuration, Diameter

Observation (Required)

Integration time, scan length, pointing centers

Corruption (Optional)

Thermal noise, phase noise, polarization leakage

• Model sky distribution as FITS file or "component list"

<pre># simobserve :: mo project skymodel complist integration</pre>)saj = = = =	c simulation tas	k: # #	root prefix for output file names model image to observe componentiat to observe integration (sampling) time	Model Sky Distribution (Required)
direction mapsize maptype pointingspacin	= = 9 =	['', ''] 'ALMA'	# # #	"J2000 19h00m00 -40d00m00" or "" to angular size of map or "" to cover hexagonal, square, etc spacing in between pointings or "0.	look like in your field?
obsmode antennalist refdate hourangle totaltime caldirection calflux		'int' 'alma.out10.cfg' '2012/05/21' 'transit' '7200s' '' '1Jy'	# # # #	observation mode to simulate [int(; interferometer antenna position fi date of observation - not critical hour angle of observation center e total time of observation or number pt source calibrator [experimental]	interferometer) sd(singledish) ""(none)] le unless concatting simulations .g3:00:00, or "transit" r of repetitions]
thermalnoise leakage graphics verbose overwrite async		'Sopapilla' 0.0 'both' False True False	# # # #	add thermal noise: [tsys-atmltsys-r cross polarization (interferometer display graphics at each stage to overwrite files starting with \$pro, If true the taskname must be starte	manuall""] only) [screen file both none] ject ed using simobserve()

• Telescope via configuration file.

<pre># simobserve :: mo project skymodel complist setpointings</pre>	osai = = = = = = ng =	c simulation tas 'sim' '' True '10s' '' ['', ''] 'ALMA'	sk: # # # #	root prefix for output file names model image to observe componentlist to observe integration (sampling) time "J2000 19h00m00 -40d00m00" or "" to center on model angular size of map or "" to cover model hexagonal, square, etc spacing in between pointings or "0.25PB" or "" for 0.5 PB Telescope
O'smout antennalist refdate hourangle totaltime caldirection calflux		'alma.out10.cfg' '2012/05/21' 'transit' '7200s' '1Jy'		observation mode to simulate [int(interferometer)Rd(singlediah) ""(none)] interferometer antenna position file date of observation and initial unless concatting simulations hour angle of observation center e.g3:00:00, or "transit" total time of observation or number of refumieer of Antennas, pt source calibrator [experimental] Configuration, Diameters
thermalnoise leakage graphics verbose overwrite async	= = = = =	'Sopapilla' 0.0 'both' False True False	# # # #	add thermal noise: [tsys-atmltsys-manual!""] cross polarization (interferometer only) display graphics at each stage to [screen file both none] overwrite files starting with \$project If true the taskname must be started using simobserve()

. .

• Observations defined via setpointings and obsmode

<pre># simobserve :: mo project skymodel setpointings integration direction mapsize maptype pointingspacin obsmode antennalist refdate hourangle totaltime caldirection</pre>	<pre>bsaic simulation</pre>	<pre>task: # root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to center on model # angular size of map or "" to cover model # angular size of map or "" to cover model # hexagonal, square, etc # spacing in between pointings or "0.25PB" or "" for 0.5 PB observation mode to simulate [int(interferometer)Isd(singledish)I""(none)] # interferometer antenna position file # date of observation - not critical unless concatting simulations # hour angle of observation center e.g3:00:00, or "transit" # total time of observation or number of repetitions # ot source contractor [experimental]</pre>
calflux thermalnoise leakage graphics verbose overwrite async	= '1Jy' = 'Sopapilla' = 0.0 = 'both' = False = True = False	<pre># add thermal noise: [ts, -atmltsys-manual!"] Observation # cross polarization (interferometer only) (Required) # display graphics at each stage to [screenIfileIbuthMome]red) # overwrite files starting with \$project # If true the taskname must be started usintegration time, scan length, pointing centers</pre>

• Corruption with thermalnoise & toolkit

<pre>model project skymodel complist setpointings integration direction mapsize maptype pointingspacin obsmode antennalist refdate hourangle</pre>	<pre>sale simulation tas</pre>	<pre>** root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to center on model # angular size of map or "" to cover model # hexagonal, square, etc # spacing in between pointings or "0.25PB" or "" for 0.5 PB # observation mode to simulate [int(interferometer) sd(singledish) ""(none)] # interferometer antenna position file # date of observation - not critical unless concatting simulations # hour angle of observation center e.g3:00:00, or "transit"</pre>
totaltime caldirection calflux thermalnoise leakage graphics verbose overwrite async	= '7200s' = '1Jy' = 'Sopapilla' = 0.0 = 'both' = False = True = False	 # total time of observation or number of repetitions # pt source calibrator [experimental] # add thermal noise: [tsys-atmltsys-manual]""] Corruption # add thermal noise: [tsys-atmltsys-manual]"] Corruption # add thermal noise: [tsys-atmltsys-manual]

• Model sky distribution as FITS file or "component list"

<pre># simobserve :: mo project skymodel complist integration</pre>)saj = = = =	c simulation tas	k: # #	root prefix for output file names model image to observe componentiat to observe integration (sampling) time	Model Sky Distribution (Required)
direction mapsize maptype pointingspacin	= = 9 =	['', ''] 'ALMA'	# # #	"J2000 19h00m00 -40d00m00" or "" to angular size of map or "" to cover hexagonal, square, etc spacing in between pointings or "0.	look like in your field?
obsmode antennalist refdate hourangle totaltime caldirection calflux		'int' 'alma.out10.cfg' '2012/05/21' 'transit' '7200s' '' '1Jy'	# # # #	observation mode to simulate [int(; interferometer antenna position fi date of observation - not critical hour angle of observation center e total time of observation or number pt source calibrator [experimental]	interferometer) sd(singledish) ""(none)] le unless concatting simulations .g3:00:00, or "transit" r of repetitions]
thermalnoise leakage graphics verbose overwrite async		'Sopapilla' 0.0 'both' False True False	# # # #	add thermal noise: [tsys-atmltsys-r cross polarization (interferometer display graphics at each stage to overwrite files starting with \$pro, If true the taskname must be starte	manuall""] only) [screen file both none] ject ed using simobserve()

Input Sky Model

- Model sky distribution as FITS file. simobserve needs:
 - Coordinates
 - Brightness units
 - Pixel scale (angular and spectral)
 - Polarization*
- These may be specified in your FITS header or supplied/over-written by simobserve.

	1.161	
skynodel	= '30do	r.fits'
inbright	=	
indirection	=	
incell	=	
incenter	=	
inwidth	=	
complist	=	11

- # model image to observe
- # scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"
- # set new direction e.g. "J2000 19h00m00 -40d00m00"
- # set new cell/pixel size e.g. "0.1arcsec"
- # set new frequency of center channel e.g. "89GHz" (required even for 2D model)
- # set new channel width e.g. "10MHz" (required even for 2D model)
- t componentlist to observe

Input Sky Model

• Alternatively, supply a Gaussian "component list." Example at:

http://casaguides.nrao.edu/index.php?title=Simulation_Guide_Component_Lists_(CASA_3.3)

skynodel	= '30d	or.fits'
inbright	=	
indirection	=	
incell	=	
incenter	=	
inwidth	=	
complist	=	

model image to observe # scale surface brightness of brightest pixel e.g. "1.2Jy/pixel" # set new direction e.g. "J2000 19h00m00 -40d00m00" # set new cell/pixel size e.g. "0.1arcsec" # set new frequency of center channel e.g. "89GHz" (required even for 2D model) # set new channel width e.g. "10MHz" (required even for 2D model)

componentlist to observe

Simulation Guide Component Lists (CASA 3.3)

J Simulating Observations in CASA

This guide is applicable to CASA version 3.3.

To create a script of the Python code on this page see Extracting scripts from these tutorials.

Contents [hide]

- 1 Explanation of the guide
- 2 Getting Started
- **3 CASA Basics**
- 4 Making a Simple FITS Image
- 5 Simulating Observations with a FITS Image and a Component List

6 Simulating Observations with Just a Component List

Simple Example

- Simulate observing 1mm dust continuum in a 30-Doradus (LMC)-like region at the distance of M31/M33 (800 kpc).
- We have a near-IR image of 30 Doradus, will need to:
 - $\circ\,$ Scale the brightness and observing frequency
 - Adjust the pixel scale (move it from 50-800 kpc)
 - Set a new position
 - Define the observations INTEGRATION TIME, TELESCOPE, ETC.

Simple Example

skymodel	= '30dor.fits'	
inbright	=	
indirection	= ''	
incell	= ''	
incenter	= ''	
inwidth	= ''	
complist	= ''	

- # model image to observe
- # scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"
- # set new direction e.g. "J2000 19h00m00 -40d00m00"
- # set new cell/pixel size e.g. "0.1arcsec"
- # set new frequency of center channel e.g. "89GHz" (required even for 2D model)
- # set new channel width e.g. "10MHz" (required even for 2D model)

componentlist to observe

- inbright = "0.6mJy/pixel" REQUIRES SPECTRAL MODEL/OTHER KNOWLEDGE TO ESTIMATE (SCIENCE!)
- Indirection = "J2000 10h00m00s -40d00m00s"
- incell="0.15arcsec" NATIVE CELL SIZE = 2.3", MOVING FROM 50 KPC B00 KPC SCALE BY 50/800
- incenter="230GHz", inwidth="2GHz" NEED TO SUPPLY OBSERVING FREQUENCY & BANDWIDTH (HERE 1MM DUST CONTINUUM)

Simple Example

skymodel	= '30dor.fits'	# model ima e to observe
inbright	= '0,6mJy/pixel'	# scale sur ace brightness of brightest pixel e.g. "1.2Jy/pixel"
indirection	= 'J2000 10h00m00s -	40d00m00s' # set new direction e.g. "J2000 19h00m00 -40d00m00"
incell	= '0,15arcsec'	# set new c ll/pixel size e.g. "0.1arcsec"
incenter	= '230GHz'	# set new f equency of center channel e.g. "89GHz" (required even for 2D model)
inwidth	= '2GHz'	# set new grannel width e.g. "10MHz" (required even for 2D model)

- inbright = "0.6mJy/pixel" REQUIRES SPECTRAL MODEL/OTHER KNOWLEDGE TO ESTIMATE (SCIENCE!)
- Indirection = "J2000 10h00m00s -40d00m00s"
- incell="0.15arcsec" NATIVE CELL SIZE = 2.3", MOVING FROM 50 KPC B00 KPC SCALE BY 50/800
- incenter="230GHz", inwidth="2GHz" NEED TO SUPPLY OBSERVING FREQUENCY & BANDWIDTH (HERE 1MM DUST CONTINUUM)

Telescop	e via configu	ration file.	Telescope (Required)
<pre># simobserve :: mc project skymodel complist setpointings</pre>	<pre>bsaic simulation task = 'sim' = '' = True = '10s' = '' = ['', ''] = 'ALMA' ng = ''</pre>	<pre>* * * root prefix for output file nates * model image to observe * componentlist to observe * integration (sampling) time * "J2000 19h00m00" -40d00m00" or "" * angular size of map or "" to cove * hexagonal, square, etc * spacing in between pointings or "</pre>	Number of Antennas, Configuration, Diameter to center on model er model '0.25PB" or "" for 0.5 PB
O' smaac antennalist refdate hourangle totaltime caldirection calflux	= 'alma.out10.cfg' = '2012/05/21' = 'transit' = '7200s' = '' = '1Jy'	<pre># observation mode to simulate [inf # Interferometer antenna position f # date of observation - not critica # hour angle of observation center # total time of observation or numb # pt source calibrator [experimental</pre>	:(interferometer) sd(singledish) ""(none)] File al unless concatting simulations e.g3:00:00, or "transit" per of repetitions al]
thermalnoise leakage graphics verbose overwrite async	= 'Sopapilla' = 0,0 = 'both' = False = True = False	<pre># add thermal noise: [tsys-atmltsys # cross polarization (interferometa # display graphics at each stage to # overwrite files starting with \$pr # If true the taskname must be star</pre>	s-manuall""] er only) o [screen file both none] roject rted using simobserve()

. .

۰.

Configuration Files

• Define telescope array for simobserve.

Config Files in CASA Already

ALMA, EVLA, CARMA, SMA, etc.

aca_cycle1.cfg	alma_cycle1_1.cfg	alma.out01.cfg	alma.out07.cfg	alma.out13.cfg	alma.out19.cfg	alma.out25.cfg	carma₊c₊cfg	pdbi-c.cfg	sma.vextended.cfg	vla.d.cfg
aca.i.cfg	alma_cycle1_2.cfg	alma.out02.cfg	alma.out08.cfg	alma.out14.cfg	alma.out20.cfg	alma.out26.cfg	carma.d.cfg	pdbi−d.cfg	vla.a.cfg	vla₊dnc₊cfg
aca.ns.cfg	alma_cycle1_3.cfg	alma.out03.cfg	alma.out09.cfg	alma.out15.cfg	alma.out21.cfg	alma.out27.cfg	carma₊e₊cfg	sma.compact.cfg	vla.b.cfg	WSRT₊cfg
aca.tp.cfg	alma_cycle1_4.cfg	alma.out04.cfg	alma.out10.cfg	alma.out16.cfg	alma.out22.cfg	alma.out28.cfg	meerkat₊cfg	sma.compact.n.cfg	vla.bna.cfg	
alma.cycle0.compact.cfg	alma_cycle1_5.cfg	alma.out05.cfg	alma.out11.cfg	alma.out17.cfg	alma.out23.cfg	carma.a.cfg	pdbi−a₊cfg	sma.extended.cfg	vla.c.cfg	
alma.cycle0.extended.cfg	alma_cycle1_6₊cfg	alma.out06.cfg	alma.out12.cfg	alma.out18.cfg	alma.out24.cfg	carma.b.cfg	pdbi-b₊cfg	sma₊subcompact₊cfg	vla₊cnb₊cfg	

Example Config File: ALMA Cycle I ACA

X	V	Ζ	diameter	nam	ne
-50,54653873 -40,68629067	-587 -577	.383557 .980051	-2,319365815 -2,318432548	7. 7.	J511 J512
# -58,44032563	-583	1862979	-2,322046322	<u>7</u> .	J510
# -58,07695154	-555	+2943694	-2,318542758	<u>7</u> .	J509
-49,2177138	-555	i.3091122	-2,31446963	7.	J508
-36,9451361	-560	,0096901	-2,312799631	7.	J507
-63,03702802	-574	.7165969	-2,320317857	7.	J506
-65.31846157	-560	.7014943	-2.320087842	7.	J505
# -35,89239576	-569	6206755	-2.318648465	7.	J504
-48.84480314	-574	.4357151	-2.325168129	7.	J503
-55,96985522	-568	.8204563	-2.321721131	7.	J502
-47.99531371	-564	.8585951	-2.318302577	7.	J501
# x u z diam pa	d#				
# 600r0393-200 # 666-9-02	(TUCa	n cangen	c prane)		
# observatory–n # coordeus=LOC	un (loca	l tancen	t plane)		
# observatoru=0	ſΔ				

Configuration Files

• Pick an intermediate-extent full-ALMA configuration

aca_cycle1.cfg	alma_cycle1_1.cfg	alma.out01.cfg	alma.out07.cfg	alma.out13.cfg	alma.out19.cfg	alma.out25.cfg	carma₊c₊cfg	pdbi-c.cfg	sma.vextended.cfg	vla₊d₊cfg
aca.i.cfg	alma_cycle1_2.cfg	alma.out02.cfg	alma.out08.cfg	alma.out14.cfg	alma.out20.cfg	alma.out26.cfg	carma.d.cfg	pdbi−d.cfg	vla.a.cfg	vla.dnc.cfg
aca.ns.cfg	alma_cycle1_3.cfg	alma.out03.cf	aima.oucvo.cry	¶lma.out15.cfg	alma.out21.cfg	alma.out27.cfg	carma₊e₊cfg	sma.compact.cfg	vla.b.cfg	WSRT₊cfg
aca.tp.cfg	alma_cycle1_4.cfg	alma.out04.cf	alma.out10.cfg	lma.out16.cfg	alma.out22.cfg	alma.out28.cfg	meerkat₊cfg	sma.compact.n.cfg	vla.bna.cfg	
alma.cycle0.compact.cfg	alma_cycle1_5.cfg	_alma.out05.cfg		alma.out17.cfg	alma.out23.cfg	carma₊a₊cfg	pdbi−a₊cfg	sma.extended.cfg	vla.c.cfg	
alma.cycle0.extended.cfg	alma_cycle1_6₊cfg	alma₊out06₊cfg	alma.out12.cfg	alma.out18.cfg	alma.out24.cfg	carma.b.cfg	pdbi-b₊cfg	sma₊subcompact₊cfg	vla₊cnb₊cfg	
							1			

• Observations defined via setpointings and obsmode

<pre># simobserve :: mo project skymodel setpointings integration direction mapsize maptype pointingspacin obsmode antennalist refdate hourangle totaltime caldirection</pre>	<pre>bsaic simulation</pre>	<pre>task: # root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to center on model # angular size of map or "" to cover model # angular size of map or "" to cover model # hexagonal, square, etc # spacing in between pointings or "0.25PB" or "" for 0.5 PB observation mode to simulate [int(interferometer)Isd(singledish)I""(none)] # interferometer antenna position file # date of observation - not critical unless concatting simulations # hour angle of observation center e.g3:00:00, or "transit" # total time of observation or number of repetitions # ot source contractor [experimental]</pre>
calflux thermalnoise leakage graphics verbose overwrite async	= '1Jy' = 'Sopapilla' = 0.0 = 'both' = False = True = False	<pre># add thermal noise: [ts, -atmltsys-manual!"] Observation # cross polarization (interferometer only) (Required) # display graphics at each stage to [screenIfileIbuthMome]red) # overwrite files starting with \$project # If true the taskname must be started usintegration time, scan length, pointing centers</pre>

setpointings

• setpointings dictates field, integration time, mosaic

setpointings	=	True
integration	=	'600s'
direction	=	
mapsize	=	['', '']
maptype	=	'ALMA'
pointingspaci	ng =	

- # integration (sampling) time
 # "J2000 19h00m00 -40d00m00" or "" to center on model
 # angular size of map or "" to cover model
 # hexagonal, square, etc
 # spacing in between pointings or "0,25PB" or "" for 0,5 PB
- integration sets data averaging (and field visit) time HERE AVERAGING 600S (10M) ENSURES A QUICK INITIAL EXECUTION
- direction sets field or map center
- mapsize, maptype, pointingspacing define a mosaic BY DEFAULT IT WILL COVER THE MODEL, HERE THAT MEANS A 9-POINT MOSAIC

• obsmode sets total time, date, observing sequence

obsnode	= 'int'
antennalist	= 'alma.out10.cfg'
refdate	= '2012/05/21'
hourangle	= 'transit'
totaltime	= '7200s'
caldirection	=
calflux	= '1Jy'

- # observation mode to simulate [int(interferometer)|sd(singledish)|""(none)]
- # interferometer antenna position file
- # date of observation not critical unless concatting simulations
- # hour angle of observation center e.g. -3:00:00, or "transit"
- # total time of observation or number of repetitions
- # pt source calibrator [experimental]
- totaltime sets total observation direction HERE 7200S IS A TYPICAL ALMA OBSERVATION DURATION
- Optionally specify the date, LST, and a calibrator sequence.

go simobserve SIMOBSERVE CREATES A MEASUREMENT SET (MS) IN projectname/projectname.ms

skymodel image

• simobserve outputs diagnostic plots to project directory TEXT FILES SHOW THE LOCATION OF POINTING CENTERS (OR LISTOBS)

• Corruption with thermalnoise & toolkit

<pre>model project skymodel complist setpointings integration direction mapsize maptype pointingspacin obsmode antennalist refdate hourangle</pre>	<pre>sale simulation tas</pre>	<pre>** root prefix for output file names # model image to observe # componentlist to observe # integration (sampling) time # "J2000 19h00m00 -40d00m00" or "" to center on model # angular size of map or "" to cover model # hexagonal, square, etc # spacing in between pointings or "0.25PB" or "" for 0.5 PB # observation mode to simulate [int(interferometer) sd(singledish) ""(none)] # interferometer antenna position file # date of observation - not critical unless concatting simulations # hour angle of observation center e.g3:00:00, or "transit"</pre>
totaltime caldirection calflux thermalnoise leakage graphics verbose overwrite async	= '7200s' = '1Jy' = 'Sopapilla' = 0.0 = 'both' = False = True = False	 # total time of observation or number of repetitions # pt source calibrator [experimental] # add thermal noise: [tsys-atmltsys-manual]""] Corruption # add thermal noise: [tsys-atmltsys-manual]"] Corruption # add thermal noise: [tsys-atmltsys-manual]

Multiple sets of observations

- One can simulate multiple sets of observations with multiple calls to simobserve
 - Simulate combining data from compact and extended arrays
 - Simulate combining data from interferometers and single dish telescopes
- The CLEAN task can take multiple measurement sets to combine interferometric observations
- The FEATHER task can combine single dish and interferometric observations

thermalnoise

• Set observing conditions to add random noise to image

- See CASAguides and toolkit for other ways to corrupt data. E.G., PHASE NOISE
- We will make a noisy and a not-noisy version to compare.
 - MAKE SURE TO SHOW THIS, OR NOT SAY IT

go simobserve SIMOBSERVE CREATES A MEASUREMENT SET (MS) IN projectname/projectname.ms

Basic Simulation Workflow

۰.

simanalyze

• Image and analyze simobserve output

CASA <8>: inp sima	analy: analu	ze ze)		
<pre># simanalyze :: i project</pre>	image =	and analyze 'sim'	simulat #	ed datasets root prefix for output file names
image	=	True	#	(re)image \$project.*.ms to \$project.image
vis modelimage imsize imdirection cell niter threshold weighting mask		'default' 0 '' 500 '0.1mJy' 'natural' []	# # # # # #	Measurement Set(s) to image prior image to use in clean e.g. existing single dish image output image size in pixels (x,y) or 0 to match model set output image direction, (otherwise center on the model) cell size with units or "" to equal model maximum number of iterations (0 for dirty image) flux level (+units) to stop cleaning weighting to apply to visibilities Cleanbox(es), mask image(s), region(s), or a level unstance
stokes	=	'I' False	# #	(only first 6 selected outputs will be displayed)
graphics verbose	=	'both' False	#	display graphics at each stage to [screen file both none]
overwrite async	= =	True False	# #	overwrite files starting with \$project If true the taskname must be started using simanalyze()

image

• Grid, invert, and CLEAN the simulated data set.

projece	-	POP OB		FOOD PECITA FOR OUTPUT FITE HUMOS
image	=	True	#	(re)image \$project.*.ms to \$project.image
vis	=	'default'	#	Measurement Set(s) to image
modelimage	=		#	prior image to use in clean e.g. existing single dish image
imsize	=	0	#	output image size in pixels (x,y) or 0 to match model
imdirection	=		#	set output image direction, (otherwise center on the model)
cell	=		#	cell size with units or "" to equal model
niter	=	500	#	maximum number of iterations (0 for dirty image)
threshold	=	'0.1mJy'	#	flux level (+units) to stop cleaning
weighting	=	'natural'	#	weighting to apply to visibilities
mask	=	[]	#	Cleanbox(es), mask image(s), region(s), or a level
outertaper	=	ĒĴ	#	uv-taper on outer baselines in uv-plane
stokes	=	'1''	#	Stokes params to image

- Similar but reduced options compared to CLEAN. DEFAULTS ARE "SMART", INFORMED BY THE MODEL.
- You can also image the simulated observations with CLEAN. THEY ARE A NORMAL CASA MEASUREMENT SET FOR ALL PURPOSES

image

• Output files can be examined with the CASA viewer. IN CASA 3.4 THESE LIVE IN projectname/projectname.image

analyze

• Create diagnostic plots based on simobserve and image

analyze	=	True	# (only first 6 selected outputs will be displayed)
showuv	=	True	# display uv coverage
showpsf	=	True	# display synthesized (dirty) beam (ignored in single dish simulation)
showmodel	=	True	# display sky model at original resolution
showconvolved	=	False	# display sky model convolved with output beam
showclean	=	True	# display the synthesized image
showresidual	=	False	# display the clean residual image (ignored in single dish simulation)
showdifferenc	e =	True	# display difference image
showfidelity	=	True	# display fidelity

• Pick up to 6 of these.

analyze

• Create diagnostic plots based on simobserve and image

. .

analyze

• Create diagnostic plots based on simobserve and image

Try It Yourself!

• Simulate one of the suite of model images at http://casaguides.nrao.edu/index.php?title=Sim_Inputs

