A Crash Course in CASA With a focus on calibration

Amy Kimball North American ALMA Science Center

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Common Astronomy Software Applications

- The offline data reduction package for ALMA and EVLA HANDLES BOTH INTERFEROMETRIC AND SINGLE-DISH ALMA DATA
- Current version: 3.4.0
 New releases about every 6 months
- CASA home: <u>http://casa.nrao.edu</u> Download, Cookbook, Reference, Example scripts, Mailing Lists
- Training material on "CASAguides" wiki: <u>http://casaguides.nrao.edu</u>
- NRAO helpdesk: <u>http://help.nrao.edu</u>
- NRAO user's forum: <u>https://science.nrao.edu/forums/</u>

CASA

Outline

• CASA interface: Python, tools, and tasks

- Structure of CASA data
- Basic calibration flow in CASA
- Example calibration task: focus on gaincal
- ALMA online calibration

casapy Shell

Start CASA by typing casapy ۲ VERSION NUMBER AND LOGGER WILL APPEAR, YOU GET AN IPYTHON PROMPT

Compiled on: Tue 2012/04/24 03:44:22 UTC This is my initialization file in "/.casa/init.py ... appending my script directory to PYTHONPATH. For help use the following commands: tasklist - Task list organized by category taskhelp - One line summary of available tasks help taskname - Full help for task - One line summary of available tools toolhelp help par.parametername - Full help for parameter name Single Dish sd* tasks are available after asap_init() is run Activating auto-logging. Current session state plus future input saved. Filename : ipython-20120505-212545.log Mode : backup Output logging : False

0	00		🗙 Log Messages (mouset	rap:/users/aleroy/casag	by-20120505-212	527.log)	
Eile	<u>E</u> dit <u>V</u> ie	W					
]		🗄 📰 🛛 📈 💭 Sea	irch Message:	#%	Filter: Time	•	7 C
Tim	e Priority	Origin	Message				
	INFO	a:::::casa					
	INFO	a:::::casa	CASA Version 3.4.0 (test	r19450)			
	INFO	a:::::casa	ι Tagged on: Mon, 23 Apr	2012			
Inse	rt Messag	e:		🔶 🕗 🖸 🗆 u	ock scroll		1.

CASA <2>:

State

Raw input log : False Timestamping : False

: active *** Loading ATNF ASAP Package...

*** ... ASAP (trunk rev#19449) import complete ***

CASA Version 3.4.0 (r19450)

- Python tips (tutorials at <u>http://python.org/doc</u>):
 - Indentation matters! So careful with cut/paste (a few lines at a time) 0
 - or use cpaste (type cpaste, paste code, end with a line of (--))
 - Run shell commands with leading "!", e.g., "!du _hc" Ο
 - To run a script: execfile('scriptname.py') Ο

"Tasks"

- Tasks high-level functionality
 - Python wrapper around the toolkit and pythoncode
 - Accessed via python function call or parameter setting interface
 - List CASA tasks with command tasklist or taskhelp
 - Most data reduction and tutorials and CASA guides focus on tasks

Import/export	Information	Editing	Manipulation		
exportasdm exportfits exportuvfits importasdm importfits importfitsidi importuvfits (importvla (importevla) (importgmrt)	imhead imstat imval listcal listfits listhistory listobs listvis plotms plotuv plotxy vishead visstat (asdmsummary) (listsdm)	fixplanets fixvis flagautocorr flagcmd flagdata flagmanager msview plotms plotxy (flagdata2) (testautoflag) (tflagcmd) (tflagdata)	concat conjugatevis cvel fixvis hanningsmooth imhead msmoments plotms plotxy split testconcat uvcontsub vishead (statwt) (uvcontsub3) {uvcontsub2}		

"Tools"

- Tools low level, complete functionality
 - Interface to underlying C++ code
 - o Intended for power users, less user-friendly, less well-documented
 - Objects: call with <tool>.<method>
 - List available tools with command toolhelp

Available tools:

- at : Juan Pardo ATM library
- cb : Calibration utilities
- cl : Component list utilities
- cp : Cal solution plotting utilities
 cs : Coordinate system utilities
- cs : Coordinate system utili
- cu : Class utilities dc : Deconvolver utilities
- fg : Flagging/Flag management utilities
- ia : Image analysis utilities
- im : Imaging utilities
- me : Measures utilities
- ms : MeasurementSet (MS) utilties
- mp : MS plotting (data (amp/phase) versus other quantities)
- pm : PlotMS utilities
- po : Imagepol utilities
- rg : Region manipulation utilities
- tb : Table utilities (selection, extraction, etc)
- tp : Table plotting utilities
- qa : Quanta utilities
- sl : Spectral line import and search
- tf : Test flagger utilities
- sm : Simulation utilities
- vp : Voltage pattern/primary beam utilties
- pl : pylab functions (e.g., pl.title, etc)
- sd : Single dish utilities

Task Syntax

- get detailed help with help(<taskname>)
- Two ways to call tasks:
 - As a function with arguments: UNSPECIFIED PARAMETERS USE DEFAULT VALUES

gaincal(vis='mydata.ms', caltable='caltable.cal', field='2')

- Standard, interactive task mode: set global input variables ahead of time, then <taskname> OR go
 OMITTING "TASKNAME" OPERATES ON CURRENT TASK
 - default(<taskname>)
 inp(<taskname>)
 saveinputs(<taskname>)
 tget(<taskname>)
- sets task's parameters to default values see task's parameter settings (input values) saves parameters to <taskname>.saved retrieves parameters (<taskname>.last)

Standard Task Interface

Examine task parameters (inputs) with inp :

CASA <49>: inp gai	incal			
> inp(gai	Incal)		
# gaincal :: Dete	ermin	e temporal ga	ins fro	m calibrator observations
vis	=	'mydata.ms'	#	Name of input visibility file
caltable	=	'mytable.band	pass.bp	cal' # Name of output gain calibration table
field	=		#	Select field using field id(s) or field name(s)
spw	=		#	Select spectral window/channels
intent	=		#	Select observing intent
selectdata	=	True	#	Other data selection parameters
timerange	=	1.1	#	Select data based on time range
uvrange	=		#	Select data within uvrange (default units meters)
antenna	=		#	Select data based on antenna/baseline
scan	=		#	Scan number range
observation	=		#	Select by observation ID(s)
msselect	=		#	Optional complex data selection (ignore for now)
solint	=	'inf'	#	Solution interval: egs. 'inf', '60s' (see help)
combine	=		#	Data axes which to combine for solve (scan, spw, and/or
			#	field)
preavg	=	'hogwarts'	#	Pre-averaging interval (sec) (rarely needed)
refant	=		#	Reference antenna name(s)
minblperant	=	4	#	Minimum baselines per antenna required for solve
minsnr	=	3.0	#	Reject solutions below this SNR
solporm	_	Falso	#	Normalize average solution amplitudes to $1.0 / G$ T only

Standard Task Interface

. .

Default values in **BLACK**

CASA <49>: inp ga:	incal			
> inp(ga:	incil)		
# gaincal :: Dete	ermin	e temporal ga:	ins from	n calibrator observations
vis	=	'mydata.ms'	#	Name of input visibility file
caltable	=	'mytable.band	bass.bpd	cal' # Name of output gain calibration table
field	=	· · · ·	#	Select field using field id(s) or field name(s)
spw	=		#	Select spectral window/channels
intent	=		#	Select observing intent
selectdata	=	True	#	Other data selection parameters
timerange	=		#	Select data based on time range
uvrange	=		#	Select data within uvrange (default units meters)
antenna	=		#	Select data based on antenna/baseline
scan	=		#	Scan number range
observation	=		#	Select by observation ID(s)
msselect	=	N ··	#	Optional complex data selection (ignore for now)
solint	=	'inf'	#	Solution interval: egs. 'inf', '60s' (see help)
combine	=		#	Data axes which to combine for solve (scan, spw, and/or
			#	field)
preavg	=	'hogwarts'	#	Pre-averaging interval (sec) (rarely needed)
refant	=		#	Reference antenna name(s)
minblperant	=	4	#	Minimum baselines per antenna required for solve
minsnr	=	3.0	#	Reject solutions below this SNR
solnorm	-	Falco	#	Normalize average colution amplitudes to 1 A (G T only

Expandable parameters are highlighted

				Sub-parameters indented
CASA <49>: inp gai	incl			
> inp(gai	inca)		
# gaincal :: Dete	ermin	, temporal gains	s fro	m calibrator observations
vis	=	nydata.ms'	#	Name of input visionlity file
caltable	=	'ivtable.bandpas	ss.bp	cal' # Name of output gain calibration table
field	=		#	Select field using field id(s) or field name(s)
spw	=		#	Select spectral window/channels
intent	=		#	select observing intent
selectdata	=	True	#	Other data selection parameters
timerange	=		#	Select data based on time range
uvrange	=	11	#	Select data within uvrange (default units meters)
antenna	=		#	Select data based on antenna/baseline
scan	=		#	Scan number range
observation	=		#	Select by observation ID(s)
msselect	=		#	Optional complex data selection (ignore for now)
solint	=	'inf'	#	Solution interval: egs. 'inf', '60s' (see help)
combine	=		#	Data axes which to combine for solve (scan, spw, and/or
			#	field)
preava	=	'hogwarts'	#	Pre-averaging interval (sec) (rarely needed)
refant	=		#	Reference antenna name(s)
minblperant	=	4	#	Minimum baselines per antenna required for solve
minsnr	=	3.0	#	Reject solutions below this SNR
solnorm	_	Falso	#	Normalize average solution amplitudes to 1 A (G T only)

Common Astronomy Software Applications

. .

. .

User set val	ues	in BLUE		Erroneous values in RED			
CACA (40) in and							
CASA <49>: inp gai	LNCLL						
# goingol Data	LUCA	townors] asi		n enlikunten eksennetiene			
# gaincal :: Dete	ermine.	temporat gai		Neme of input a cibility file			
	= 1	nydata.ms	#	Name of input visibility file			
caltable	= 'I	nytable.bandp	ass.pp	cal' # Name of output gain calibration table			
field	=		#	Select field using field id(s) or field name(s)			
spw	=		#	Select spectral window/channels			
intent	=		#	Select observing intent			
selectdata	=	True	#	Other data selection parameters			
timerange	=		#	Select data based on time range			
uvrange	=		#	🖌elect data within uvrange (default units meters)			
antenna	=		#	Select data based on antenna/baseline			
scan	=		#	Scan number range			
observation	=		#	Select by observation ID(s)			
msselect	=		#	Optional complex data selection (ignore for now)			
solint	=	'inf	#	Solution interval: egs. 'inf', '60s' (see help)			
combine	=	K	# #	<pre>Data axes which to combine for solve (scan, spw, and/or field)</pre>			
preavg	= '	nogwarts'	#	Pre-averaging interval (sec) (rarely needed)			
refant	=		#	Reference antenna name(s)			
minblperant	=	4	#	Minimum baselines per antenna required for solve			
minsnr	=	3.0	#	Reject solutions below this SNR			
solnorm	_	Falso	#	Normalize average colution amplitudes to 1 A (G T only)			

Outline

- CASA interface: Python, tools, and tasks
- Structure of CASA data
- Basic calibration flow in CASA
- Example calibration task: focus on gaincal
- ALMA online calibration

Measurement Set

- CASA stores u-v data in directories called "Measurement Sets" TO DELETE THEM USE os.system("rm -rf my_data.ms")
- These data sets store two copies of the data (called "columns"):

"Data" Column	"Corrected" Column
Contains the raw,	Usually created by applying
unprocessed	one or more calibration
measurements.	terms to the data.

- Additionally a "model" may be stored separately. This is used to calculate what the telescope SHOULD have observed.
- Each data point may also be "flagged," i.e., marked bad. IN THIS CASE IT IS IGNORED (TREATED AS MISSING) BY CASA OPERATIONS.

listobs

- Measurement sets contain a mix of data:
 - One or more <u>spectral windows</u>
 - One or more <u>fields (e.g., source, phase calibrator, flux calibrator</u>)
 - Data from several <u>antennas</u>
 - Data organized into discrete scans
- Inspect the contents of your measurement set using listobs.
 - Can print output to a file or the logger (use the file option!)
 - Verbose (detailed time log) output possible
 - Summarizes fields, antennas, sources, spectral windows

Always run listobs first to get oriented!

Calibration Tables

- Calibration yields estimates of phase and amplitude corrections. E.G., AS A FUNCTION OF TELESCOPE, TIME, FREQUENCY, POLARIZATION.
- CASA stores these corrections in directories called "calibration tables." TO DELETE THEM USE os.system("rm -rf my_table.cal")
- These are created by calibration tasks:
 E.G., gaincal, bandpass, gencal
- Applied via "applycal" to the data column and saved as corrected.

Outline

- CASA interface: Python, tools, and tasks
- Structure of CASA data
- Basic calibration flow in CASA
- Example calibration task: focus on gaincal
- ALMA online calibration

Key Tasks for Calibration

Derive Calibration Tables

- setjy: set "model" (correct) visibilities using known model for a calibrator
- bandpass: calculate bandpass calibration table (amp/phase vs frequency)
- gaincal: calculate temporal gain calibration table (amp/phase vs time)
- **fluxscale**: apply absolute flux scaling to calibration table from known source

Manipulate Your Measurement Set

- flagdata/flagcmd/flagmanager: flag (remove) bad data
- applycal: apply calibration table(s) from previous steps
- **split**: split off calibrated data from your ms (for imaging!)

Inspect Your Data and Results

- plotms: inspect your data interactively
- plotcal: examine a calibration table

Basic Calibration Flow

Define what the telescope SHOULD have seen.

oftware Applicat

Schematic Calibration

Calibrate the Amplitude and Phase vs. Frequency of Each Antenna Assume time & frequency response separable, remove time variability Calibrate the Amplitude and Phase vs. Time of Each Antenna Assume time & frequency response separable, remove freq. variability Set the Absolute Amplitude Scale With Reference to a Known Source PLANET (MODELED), MONITORED QUASAR, ETC. Apply all corrections to produce calibrated data

Schematic Calibration

Absolute flux calibration

Define a model for the flux calibrator source setjy

Titan model (distributed with CASA)

For all other sources, default model is 1 Jy point source

Absolute flux calibration

Absolute flux calibration

Fluxscale: applies constraint that field-dependent antenna gains are due solely to unknown flux densities of calibrators.

Outline

- CASA interface: Python, tools, and tasks
- Structure of CASA data
- Basic calibration flow in CASA
- Example calibration task: focus on gaincal
- ALMA online calibration

·/	np(gaincai)				
# gaincal	:: Determine	temporal	gains	fro	m calibrator observations
vis	=			#	Name of input visibility file
caltable	=			#	Name of output gain calibration table
field	=			#	Select field using field id(s) or field name(s)
spw	=			#	Select spectral window/channels
intent	=			#	Select observing intent
selectdata	=	False		#	Other data selection parameters
solint	=	'inf'		#	Solution interval: egs. 'inf', '60s' (see help)
combine	=			#	Data axes which to combine for solve (scan, spw,
				#	and/or field)
preavg	=	-1.0		#	Pre-averaging interval (sec) (rarely needed)
refant	=			#	Reference antenna name(s)
minblperant	t =	4		#	Minimum baselines _per antenna_ required for solve
minsnr	=	3.0		#	Reject solutions below this SNR
solnorm	=	False		# #	Normalize average solution amplitudes to 1.0 (G, T only)
gaintype	=	'G'		#	Type of gain solution (G.T.GSPLINE,K.KCROSS)
smodel	=	[]		#	Point source Stokes parameters for source model.
calmode	=	'ap'		#	Type of solution: ('ap', 'p', 'a')
append	=	False		#	Append solutions to the (existing) table
gaintable	=	['']		#	Gain calibration table(s) to apply on the fly
gainfield	=	['']		#	Select a subset of calibrators from gaintable(s)
interp	=	['']		#	Temporal interpolation for each gaintable (=linear)
spwmap	=	[]		#	Spectral windows combinations to form for
				#	gaintables(s)
gaincurve	=	False		#	Apply internal VLA antenna gain curve correction
opacity	=	[]		#	Opacity correction to apply (nepers), per spw
parang	=	False		#	Apply parallactic angle correction on the fly
async	=	False		#	If true the taskname must be started using
-				#	gaincal()

• •

. .

. . . .

	ip(gaincai)			_	
<pre># gaincal :</pre>	:: Determine	temporal	gains	fro	m calibrator observations
vis	=			#	Name of input visibility file
caltable	=			#	Name of output gain calibration table
field	=				Select Cint Cint Cint Cint Cint Cint Cint Cin
spw	=			#	Nect Input Moscurement Set
intent	=			#	Seller input Measurement Set
selectdata	=	False		#	Other of
solint	=	'inf'		#	Solutid (with model set, if needed)
combine	=			#	Data a
				#	and/or field)
preavg	=	-1.0		#	Pre-averaging interval (sec) (rarely needed)
refant	=			#	Reference antenna name(s)
minblperant	=	4		#	Minimum baselines _per antenna_ required for solve
minsnr	=	3.0		#	Reject solutions below this SNR
solnorm	=	False		# #	Normalize average solution amplitudes to 1.0 (G, T only)
gaintype	=	'G'		#	Type of gain solution (G.T.GSPLINE,K.KCROSS)
smodel	=	[]		#	Point source Stokes parameters for source model.
calmode	=	'ap'		#	Type of solution: ('ap', 'p', 'a')
append	=	False		#	Append solutions to the (existing) table
gaintable	=	['']		#	Gain calibration table(s) to apply on the fly
gainfield	=	['']		#	Select a subset of calibrators from gaintable(s)
interp	=	['']		#	Temporal interpolation for each gaintable (=linear)
spwmap	=	[]		#	Spectral windows combinations to form for
				#	gaintables(s)
gaincurve	=	False		#	Apply internal VLA antenna gain curve correction
opacity	=	[]		#	Opacity correction to apply (nepers), per spw
parang	=	False		#	Apply parallactic angle correction on the fly
async	=	False		#	If true the taskname must be started using
-				#	gaincal()

. .

. . . .

	np(gaincai)	_	_	
# gaincal	:: Determine	temporal	gains fr	om calibrator observations
vis	=		#	Name of input visibility file
caltable	=		#	Name of output gain calibration table
field	=		#	Select
spw	=		#	Select Output Colibration Table
intent	=		#	Server Output Cambration Table
selectdata	=	False	#	Other d
solint	=	'inf'	#	Solutid (apply later with applycal)
combine	=		#	Data ax
			#	and/or field)
preavg	=	-1.0	#	Pre-averaging interval (sec) (rarely needed)
refant	=		#	Reference antenna name(s)
minblperant	=	4	#	Minimum baselines _per antenna_ required for solve
minsnr	=	3.0	#	Reject solutions below this SNR
solnorm	=	False	#	Normalize average solution amplitudes to 1.0 (G, T only)
gaintype	=	'G'	#	Type of gain solution (G,T,GSPLINE,K,KCROSS)
smodel	=	[]	#	Point source Stokes parameters for source model.
calmode	=	'ap'	#	Type of solution: ('ap', 'p', 'a')
append	=	False	#	Append solutions to the (existing) table
gaintable	=	['']	#	Gain calibration table(s) to apply on the fly
gainfield	=	['']	#	Select a subset of calibrators from gaintable(s)
interp	=	['']	#	Temporal interpolation for each gaintable (=linear)
spwmap	=	Ē	#	Spectral windows combinations to form for
			#	gaintables(s)
gaincurve	=	False	#	Apply internal VLA antenna gain curve correction
opacity	=	[]	#	Opacity correction to apply (nepers), per spw
parang	=	False	#	Apply parallactic angle correction on the fly
async	=	False	#	If true the taskname must be started using
-			#	gaincal()

• •

. . . .

/ 1	np(gaincai)				
# gaincal	:: Determine	temporal	gains fro	om calibr	ator observations
vis	=		#	Name of	`input visibility file
caltable	=		#	Name of	output gain calibration table
field	=		#	Select	<u> </u>
spw	=		#	Select	
intent	=		#	Select	
selectdata	=	False		Other c	Options to select which
solint	=	'inf'	#	Sclutic	
combine	=		#	Data a	data to consider:
			#	and/or	
preavg	=	-1.0	#	Pre-ave	e.g., select calibrator fields
refant	=		#	Referer	8,
minblperant	; =	4	#	Minimum	
minsnr	=	3.0	#	Reject	SOLUCIONS DELOW CHIS JAN
solnorm	=	False	#	Normali	ze average solution amplitudes to 1.0 (G, T
-			#	_only)	
gaintype	=	' <u>G'</u>	#	Type of	gain solution (G,T,GSPLINE,K,KCROSS)
smodel	=	Ľ	#	Point s	ource Stokes parameters for source model.
calmode	=	_'ap'	#	Type of	solution: ('ap', 'p', 'a')
append	=	False	#	Append	solutions to the (existing) table
gaintable	=	[]	#	Gain ca	libration table(s) to apply on the fly
gainfield	=	[]	#	Select	a subset of calibrators from gaintable(s)
interp	=	[,,]	#	Tempora	al interpolation for each gaintable (=linear)
spwmap	=	LJ	#	Spectra	l windows combinations to form for
			#	gainta	bles(s)
gaincurve	=	False	#	Apply i	nternal VLA antenna gain curve correction
opacity	=	_ []	#	Upacity	(correction to apply (nepers), per spw
parang	=	False	#	Apply F	arallactic angle correction on the fly
async	=	False	#	If true gainca	e the taskname must be started using al()

/ 1	np(gaincai)				
# gaincal	:: Determine	e temporal	gains	fro	om calibrator observations
vis	=			#	Name of input visibility file
caltable	=			#	Name of output gain calibration table
field	=			#	Select Ciald and Ciald ideal of Ciald and Ciald
spw	=			#	Select
intent	=			#	Select Time interval over which to
selectdata	=	False		#	Other d
solint	=	'inf'		#	Solutio SOIVE.
combine	=			#	Data a
				#	and/or (Only cross scan or spw
preavg	=	-1.0		#	Pre-ave
refant	=			#	Reference boundaries with "combine")
minblperant	=	4		#	Minimum
minsnr	=	3.0		#	Reject soracions berow and some
solnorm	=	False		#	Normalize average solution amplitudes to 1.0 (G, T
				#	only)
gaintype	=	'G'		#	Type of gain solution (G,T,GSPLINE,K,KCROSS)
smodel	=	[]		#	Point source Stokes parameters for source model.
calmode	=	'ap'		#	Type of solution: ('ap', 'p', 'a')
append	=	False		#	Append solutions to the (existing) table
gaintable	=	['']		#	Gain calibration table(s) to apply on the fly
gainfield	=	['']		#	Select a subset of calibrators from gaintable(s)
interp	=	['']		#	Temporal interpolation for each gaintable (=linear)
spwmap	=	[]		#	Spectral windows combinations to form for
				#	gaintables(s)
gaincurve	=	False		#	Apply internal VLA antenna gain curve correction
opacity	=	[]		#	Opacity correction to apply (nepers), per spw
parang	=	False		#	Apply parallactic angle correction on the fly
async	=	False		#	If true the taskname must be started using
_				#	gaincal()

inp(gaincal) # gaincal :: Determine temporal gains from calibrator observations Name of input visibility file vis caltable . . Name of output gain calibration table . . field Select . . Select # SPW . . intent Select = = **Reference** Antenna selectdata False Other ('inf' solint Solutio = . . combine Data = (pick a central one with and/or little or no flagging) -1.0 Pre-ave preavg = refant Referer minblperant # Minimum = 4 3.0 minsnr Reject Solutions below this one = isolnorm False Normalize average solution amplitudes to 1.0 (G, T = onlu) # 'G' Type of gain solution (G,T,GSPLINE,K,KCROSS) gaintype = [] smodel Point source Stokes parameters for source model. = # 'ap' Type of solution: ('ap', 'p', 'a') calmode = # False append Append solutions to the (existing) table = [...] Gain calibration table(s) to apply on the fly gaintable = # gainfield [יי] Select a subset of calibrators from gaintable(s) = **Ē** 1 1 Temporal interpolation for each gaintable (=linear) interp = # ٢٦ Spectral windows combinations to form for # spwmap = gaintables(s) # False Apply internal VLA antenna gain curve correction gaincurve # = ٢٦ Opacity correction to apply (nepers), per spw opacity = False Apply parallactic angle correction on the fly parang = False If true the taskname must be started using async = # gaincal(...)

inp(gaincal) # gaincal :: Determine temporal gains from calibrator observations Name of input visibility file vis Name of output gain calibration table caltable field Select . . Select SPW # 1.1 Select intent = = Other d selectdata False **Requirements for a solution** 'inf' Solutio solint = in terms of S/N and # of . . combine Data a = baselines contributing -1.0 Pre-ave preavg = 1.1 refant Referer = minblperant Minimum = 3.0 minsnr Reject solutions below this on = isolnorm False = Normalize average solution amplitudes to 1.0 (G, T only) # 'G' Type of gain solution (G,T,GSPLINE,K,KCROSS) gaintype = [] smodel Point source Stokes parameters for source model. = # 'ap' Type of solution: ('ap', 'p', 'a') calmode = # False Append solutions to the (existing) table append = [...] Gain calibration table(s) to apply on the fly loaintable = # gainfield [יי] Select a subset of calibrators from gaintable(s) = **Г** י י **1** Temporal interpolation for each gaintable (=linear) interp = # ٢٦ Spectral windows combinations to form for spwmap = # gaintables(s) # False Apply internal VLA antenna gain curve correction gaincurve # = ٢٦ Opacity correction to apply (nepers), per spw opacity = # Apply parallactic angle correction on the fly parang False = # False If true the taskname must be started using async = # gaincal(...)

/ 1	np(gaincai)				
# gaincal	:: Determine	temporal	gains	fro	om calibrator observations
vis	=			#	Name of input visibility file
caltable	=			#	Name of output gain calibration table
field	=			#	Select Ciald and Ciald in Ciald and Ciald
spw	=			#	Select
intent	=			#	Select
selectdata	=	False		#	Other d
solint	=	'inf'		#	Solutio
combine	=			#	Data Normalize solutions?
				#	and or
preavg	=	-1.0		#	Bre-ave
refant	=			#	Referen
minblperant	. =	4		#	Minimum
minsnr	=	3.0		#	Reject soracions berow chis one
solnorm	=	False		#	Normalize average solution amplitudes to 1.0 (G, T
				#	only)
gaintype	=	' <u>G'</u>		#	Type of gain solution (G,T,GSPLINE,K,KCROSS)
smodel	=	[]		#	Point source Stokes parameters for source model.
calmode	=	'ap'		#	Type of solution: ('ap', 'p', 'a')
append	=	False		#	Append solutions to the (existing) table
gaintable	=	['']		#	Gain calibration table(s) to apply on the fly
gainfield	=	['']		#	Select a subset of calibrators from gaintable(s)
interp	=	['']		#	Temporal interpolation for each gaintable (=linear)
spwmap	=	[]		#	Spectral windows combinations to form for
				#	gaintables(s)
gaincurve	=	False		#	Apply internal VLA antenna gain curve correction
opacity	=	[]		#	Opacity correction to apply (nepers), per spw
parang	=	False		#	Apply parallactic angle correction on the fly
async	=	False		#	If true the taskname must be started using
				#	gaincal()

• •

INP(gaincal) # gaincal :: Determine temporal gains from calibrator observations Name of input visibility file vis caltable . . Name of output gain calibration table = . . field Select . . Select SPW # What to solve for? 1.1 intent Select = = selectdata False Other ('a'mplitude 'inf' solint Solutio = . . combine = Data a 'p'hase and -1.0 preavg Pre = 1.1 refant 'ap' - both = Fere minblperant 4 = linimu 3.0 minsnr Reject solutions below this one = False Normalize average solution amplitudes to 1.0 (G, T solnorm = only) 'G' Type of gain solution (G,T,GSPLINE,K,KCROSS) gaintype = [] smodel Point source Stokes parameters for source model. = 'ap' Type of solution: ('ap', 'p', 'a') calmode = False append Append solutions to the (existing) table = ויין Gain calibration table(s) to apply on the fly gaintable = # [''] gainfield Select a subset of calibrators from gaintable(s) = ריי ז Temporal interpolation for each gaintable (=linear) interp = # ٢٦ Spectral windows combinations to form for = # spwmap gaintables(s) False Apply internal VLA antenna gain curve correction gaincurve # = ٢٦ Opacity correction to apply (nepers), per spw opacity = False Apply parallactic angle correction on the fly parang = # False If true the taskname must be started using async = # gaincal(...)

/ inp(gaincal) # gaincal :: Determine temporal gains from calibrator observations Name of input visibility file vis caltable . . Name of output gain calibration table . . field Select . . Select SPW # . . **Calibration tables to apply** Select intent = = selectdata False Other (before solution: 'inf' solint Solutio = 1.1 combine = Data a e.g., apply bandpass # and/ -1.0 Prez preavg = calibration before gaincal 1.1 refant Ref erer = minblperant 4 = nimu 3.0 eject solutions below this on minsnr = isolnorm False = Normalize average solution amplitudes to 1.0 (G, T only) 'G' Type of gain solution (G,T,GSPLINE,K,KCROSS) gaintype = [] Point source Stokes parameters for source model. smodel = 'ap' Type of solution: ('ap', 'p', 'a') calmode = False Append solutions to the (existing) table append = [''] Gain calibration table(s) to apply on the fly gaintable = gainfield ריי ז Select a subset of calibrators from gaintable(s) = [''] Temporal interpolation for each gaintable (=linear) interp = ٢٦ Spectral windows combinations to form for = spwmap gaintables(s) False Apply internal VLA antenna gain curve correction gaincurve # = ٢٦ Opacity correction to apply (nepers), per spw opacity = Apply parallactic angle correction on the fly False parang = False If true the taskname must be started using async = # gaincal(...)

Outline

- CASA interface: Python, tools, and tasks
- Structure of CASA data
- Basic calibration flow in CASA
- Example calibration task: focus on gaincal
- ALMA online calibration

ALMA Online Calibration

- System Temperature (Tsys) atmospheric emission/opacity
 - Key to gain transfer across elevation
 - Amplitude calibration, variable with frequency (observed in "TDM")
- Water Vapor Radiometer (WVR) phase delay due to atmosphere
 - Key to correct short-timescale phase variations
 - Phase calibration, variable with time

These are provided by the observatory (eventually applied online).

- Apply them as first step (or start with provided pre-applied versions)
- $\circ~$ In either case, inspect these tables to learn about data quality

ALMA Online Calibration

CASA Common Astronomy Software Applications

Your Turn

- Point your web browser at the Synthesis Imaging School CASA guide.
 http://casaguides.nrao.edu/index.php?title=TWHydraBand7_SS12
- Decide whether to start with WVR and Tsys applied.
- Work end-to-end through the calibration of a single measurement set. THE FULL ONLINE GUIDES STEP THROUGH CALIBRATION FOR SEVERAL MSS.
- (Optional) Try writing a python script as you go. This is very good practice for actual reduction.
- After lunch, we will image the results. DON'T WORRY, WE HAVE PROVIDED CALIBRATED DATA FOR THE AFTERNOON!

ASK IF YOU NEED HELP!

