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• from the van Citttert-Zernike theorem (TMS Chapter 14)

– for small fields of view:                                                                         
     the complex visibility,V(u,v),                                                            
       is the 2D Fourier transform of                                                       
                        the brightness on the sky,T(x,y)

– u,v (wavelengths) are spatial frequencies in                                                    
E-W and N-S directions, i.e. the baseline lengths

– x,y (rad) are angles in tangent plane relative to                                              
a reference position in the E-W and N-S directions

Visibility and Sky Brightness

T(x,y)x

y
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• Fourier theory states that any signal (including images)                       can be expressed as a sum 
of sinusoids

• (x,y) plane and (u,v) plane are conjugate coordinates
           T(x,y)                                 V(u,v) = FT{T(x,y)}

• the Fourier Transform contains all information of the original

The Fourier Transform

Jean Baptiste 
Joseph Fourier 

 1768-1830
signal 4 sinusoids sum
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• acquire comfort with the Fourier domain…
– in older texts, functions and their Fourier 

transforms occupy upper and lower domains, as if 
“functions circulated at ground level and their 
transforms in the underworld’’  (Bracewell 1965)

• a few properties of the Fourier transform:
– scaling:
– shifting: 
– convolution/multiplication: 
– sampling theorem: 

The Fourier Domain
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Some 2D Fourier Transform Pairs

narrow features transform to wide features (and vice-versa)

Amp{V(u,v)}

Gaussian

δ Function Constant 

Gaussian
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More 2D Fourier Transform Pairs
Amp{V(u,v)}

elliptical
Gaussian

sharp edges result in many high spatial frequencies

elliptical
Gaussian

Disk Bessel 
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More 2D Fourier Transform Pairs

complicated structure on many scales

Amp{V(u,v)}
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Amplitude and Phase 
• complex numbers: (real, imaginary) or (amplitude, phase)

– amplitude tells “how much” of a certain frequency component
– phase tells “where” this component is located

T(x,y) Amp{V(u,v)} Pha{V(u,v)}
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Amplitude and Phase 
• complex numbers: (real, imaginary) or (amplitude, phase)

– amplitude tells “how much” of a certain frequency component
– phase tells “where” this component is located

T(x,y) Amp{V(u,v)} Pha{V(u,v)}
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Two Visibilities for One Measurement 

T(x,y) Amp{V(u,v)}
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Visibility and Sky Brightness
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Visibility and Sky Brightness
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Aperture Synthesis

• sample V(u,v) at enough points to synthesis the 
equivalent large aperture of size (umax ,vmax )
– 1 pair of telescopes  1 (u,v) sample at a time
– N telescopes   number of samples = N(N-1)/2
– fill in (u,v) plane by making use of Earth rotation:                       

Sir Martin Ryle, 1974 Nobel Prize in Physics
– reconfigure physical layout of N telescopes for more

2 configurations 
of 8 SMA antennas 

345 GHz
Dec = -24 deg

Sir Martin Ryle 
1918-1984
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Examples of Millimeter Aperture 
Synthesis Telescopes

EVLA ATCA

SMA

CARMA

IRAM PdBI

ALMA (2012+)



16

• in aperture synthesis, V(u,v) samples are limited by 
number of telescopes, and Earth-sky geometry

Imaging: (u,v) plane Sampling

– high spatial frequencies 
• maximum angular resolution

– low spatial frequencies
• extended structures invisible

– irregular within high/low limits
• sampling theorem violated
• information missing
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• sample Fourier domain at discrete points

• the inverse Fourier transform is

• the convolution theorem tells us

    where                                   (the point spread function)

Fourier transform of sampled visibilities yields the true sky 
brightness convolved with the point spread function

(the “dirty image” is the true image convolved with the “dirty beam”)                      
   

Formal Description
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Dirty Beam and Dirty Image

B(u,v)

TD(x,y)
(dirty image)

b(x,y)
(dirty beam)

T(x,y)
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Dirty Beam Shape and N Antennas

2 Antennas
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Dirty Beam Shape and N Antennas

3 Antennas
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Dirty Beam Shape and N Antennas

4 Antennas
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Dirty Beam Shape and N Antennas

5 Antennas
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Dirty Beam Shape and N Antennas

6 Antennas
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Dirty Beam Shape and N Antennas

7 Antennas
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Dirty Beam Shape and N Antennas

8 Antennas
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Dirty Beam Shape and N Antennas

8 Antennas x 6 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 30 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 60 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 120 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 240 Samples
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Dirty Beam Shape and N Antennas

8 Antennas x 480 Samples
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How to analyze interferometer data?
• uv plane analysis

– best for “simple” sources, e.g. point sources, disks
• image plane analysis

– Fourier transform V(u,v) samples to image plane, get T D(x,y)
– but difficult to do science on dirty image
– deconvolve b(x,y) from TD(x,y) to determine (model of) T(x,y)

visibilities                dirty image          sky brightness
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Details of the Dirty Image

• Fourier Transform 
– Fast Fourier Transform (FFT) much faster than simple Fourier 

summation, O(NlogN) for 2N x 2N image
– FFT requires data on regularly spaced grid
– aperture synthesis observations not on a regular grid…

• “Gridding” is used to resample V(u,v) for FFT
– customary to use a convolution technique

• visibilities are noisy samples of a smooth function
• nearby visibilities not independent

– use special (“Spheroidal”) functions with nice properties
• fall off quickly in (u,v) plane (not too much smoothing)
• fall off quickly in image plane (avoid aliasing)
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Primary Beam 
• A telescope does not have 

uniform response across 
the entire sky
– main lobe approximately 

Gaussian, fwhm ~1.2λ/D, 
where D is ant diameter       
= “primary beam”

– limited field of view
– sidelobes, error beam 

(sometimes important)

• primary beam response 
modifies sky brightness:  
T(x,y)  A(x,y)T(x,y)
– correct with division by 

A(x,y) in image plane

A(x,y)

T(x,y)

SMA 
345 GHz

ALMA 
690 GHz

T(x,y)                   large A(x,y)          small A(x,y)
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Pixel Size and Image Size

• pixel size
– should satisfy sampling theorem for the longest baselines,        Δx < 1/2 

umax  , Δy < 1/2 vmax

– in practice, 3 to 5 pixels across the main lobe of the dirty beam (to aid 
deconvolution)

– e.g., SMA: 870 µm, 500 m baselines  600 kλ < 0.1 arcsec

• image size
– natural resolution in (u,v) plane samples FT{A(x,y)}, implies image size 

2x primary beam
– e.g., SMA: 870 µm, 6 m telescope  2x 35 arcsec

– if there are bright sources in the sidelobes of A(x,y), then they will be 
aliased into the image (need to make a larger image)
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Dirty Beam Shape and Weighting

• introduce weighting function W(u,v)

– W modifies sidelobes of dirty beam
    (W is also gridded for FFT)

• “Natural” weighting
– W(u,v) = 1/σ2(u,v) at points with data and      

    zero elsewhere, where σ2(u,v) is the 
noise variance of the (u,v) sample

– maximizes point source sensitivity          
(lowest rms in image)

– generally more weight to short baselines 
(large spatial scales), degrades resolution
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Dirty Beam Shape and Weighting

• “Uniform” weighting
– W(u,v) is inversely proportional to local 

density of (u,v) points, so sum of weights   
 in a (u,v) cell is a constant (or zero)

– fills (u,v) plane more uniformly, so          
(outer) sidelobes are lower

– gives more weight to long baselines and 
therefore higher angular resolution

– degrades point source sensitivity               
(higher rms in image)

– can be trouble with sparse sampling:       
cells with few data points have same 
weight as cells with many data points



38

Dirty Beam Shape and Weighting

• “Robust” (Briggs) weighting
– variant of “uniform” that avoids giving too 

much weight to cell with low natural weight
– implementations differ, e.g. SN is natural 

weight of a cell, St is a threshold

– large threshold  natural weighting
– small threshold  uniform weighting
– an adjustable parameter that allows for 

continuous variation between highest 
angular resolution and optimal point    
source sensitivity
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Dirty Beam Shape and Weighting

• “Tapering”
– apodize the (u,v) sampling by a Gaussian

     t = tapering parameter (in kλ; arcsec)
– like smoothing in the image plane 

(convolution by a Gaussian)
– gives more weight to short baselines, 

degrades angular resolution
– degrades point source sensitivity but can 

improve sensitivity to extended structure
– could use elliptical Gaussian, other function
– limits to usefulness



Robust 0
+ Taper

0.77x0.62

σ=1.7
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Weighting and Tapering: Noise

Natural
0.77x0.62

σ=1.0

Uniform
0.39x0.31

σ=3.7

Robust 0
0.41x0.36

σ=1.6
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Weighting and Tapering: Summary

Robust/Uniform Natural Taper

Resolution higher medium lower
Sidelobes lower higher depends
Point Source 
Sensitivity

lower maximum lower

Extended Source 
Sensitivity

lower medium higher

•
imaging parameters provide a lot of freedom

•
appropriate choice depends on science goals
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• difficult to do science on dirty image
• deconvolve b(x,y) from TD(x,y) to recover T(x,y)
• information is missing, so be careful!
    (there’s noise, too)

Deconvolution

dirty image                                         “CLEAN” image
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Deconvolution Philosophy
• to keep you awake at night

  an infinite number of T(x,y) compatible with sampled V(u,v), i.e. 
“invisible” distributions R(x,y) where b(x,y)  R(x,y) = 0 

• no data beyond umax ,vmax  unresolved structure

• no data within umin ,vmin  limit on largest size scale

• holes between umin ,vmin and umax ,vmax  sidelobes

– noise  undetected/corrupted structure in T(x,y)
– no unique prescription for extracting optimum estimate of true sky 

brightness from visibility data

• deconvolution  
– uses non-linear techniques effectively interpolate/extrapolate samples of 

V(u,v) into unsampled regions of the (u,v) plane
– aims to find a sensible model of T(x,y) compatible with data
– requires a priori assumptions about T(x,y)
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Deconvolution Algorithms

• most common algorithms in radio astronomy
– CLEAN (Högbom 1974)

• a priori assumption: T(x,y) is a collection of point sources
• variants for computational efficiency, extended structure

– Maximum Entropy (Gull and Skilling 1983)
• a priori assumption: T(x,y) is smooth and positive
• vast literature about the deep meaning of entropy (Bayesian)

– hybrid approaches of these can be effective

• deconvolution requires knowledge of beam shape and 
image noise properties (usually OK for aperture synthesis)
– atmospheric seeing can modify effective beam shape
– deconvolution process can modify image noise properties
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Basic CLEAN Algorithm
1. Initialize

• a residual map to the dirty map
• a Clean component list to empty

– Identify strongest feature in residual 
map as a point source

– Add a fraction g (the loop gain) of this 
point source to the clean component 
list

– Subtract the fraction g times b(x,y) 
from residual map

– If stopping criteria not reached, goto 
step 2 (an iteration)

– Convolve Clean component (cc) list by 
an estimate of the main lobe of the 
dirty beam (the “Clean beam”) and add 
residual map to make the final 
“restored” image

b(x,y)

TD(x,y)
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Basic CLEAN Algorithm (cont)

• stopping criteria
– residual map max < multiple of rms (when noise limited)
– residual map max < fraction of dirty map max (dynamic range limited)
– max number of clean components reached (no justification)

• loop gain 
– good results for g ~ 0.1 to 0.3
– lower values can work better for smoother emission, g ~ 0.05

• easy to include a priori information about where to search 
for clean components (“clean boxes”)

– very useful but potentially dangerous!

• Schwarz (1978): CLEAN is equivalent to a least squares 
fit of sinusoids, in the absense of noise
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CLEAN 

restored 
image

residual 
map

CLEAN 
model

TD(x,y)
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CLEAN with Box 

restored 
image

residual 
map

CLEAN 
model

TD(x,y)
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CLEAN with Poor Choice of Box

restored 
image

residual 
map

CLEAN 
model

TD(x,y)
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CLEAN Variants

• Clark CLEAN
– aims at faster speed for large images
– Högbom-like “minor” cycle w/ truncated dirty beam, subset of largest residuals
– in “major” cycle, cc’s are FFT’d and subtracted from the FFT of the residual 

image from the previous “major” cycle

• Cotton-Schwab CLEAN (MX)
– in “major” cycle, cc’s are FFT’d and subtracted from ungridded visibilities
– more accurate but slower (gridding steps repeated)

• Steer, Dewdny, Ito (SDI) CLEAN
– aims to supress CLEAN “stripes” in smooth, extended emission
– in “minor” cycles, any point in the residual map greater than a fraction (<1) of 

the maximum is taken as a cc 

• Multi-Resolution CLEAN
– aims to account for coupling between pixels by extended structure
– independently CLEAN a smooth map and a difference map, fewer cc’s
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“Restored” Images

• CLEAN beam size:
– natural choice is to fit the central peak of the dirty beam with 

elliptical Gaussian 
– unit of deconvolved map is Jy per CLEAN beam area               

     (= intensity, can convert to brightness temperature)
– minimize unit problems when adding dirty map residuals
– modest super resolution often OK, but be careful

• photometry should be done with caution
– CLEAN does not conserve flux (extrapolates)
– extended structure missed, attenuated, distorted
– phase errors (e.g. seeing) can spread signal around 
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Noise in Images

• point source sensitivity: straightforward
– telescope area, bandwidth, integration time, weighting 
– in image, modify noise by primary beam response

• extended source sensitivity: problematic
– not quite right to divide noise by n beams covered by source:  

smoothing = tapering, omitting data  lower limit
– Interferometers always missing flux at some spatial scale

• be careful with low signal-to-noise images
– if position known, 3σ OK for point source detection
– if position unknown, then 5σ required (flux biased by ~1σ)
– if < 6σ, cannot measure the source size (require ~3σ difference 

between “long” and “short” baselines)
– spectral lines may have unknown position, velocity, width
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– Maximize a measure of 
smoothness (the entropy)

        subject to the constraints

       
– M is the “default image”
– fast (NlogN) non-linear 

optimization solver due to 
Cornwell and Evans (1983)

– optional: convolve with 
Gaussian beam and add 
residual map to make image

b(x,y)

TD(x,y)

Maximum Entropy Algorithm
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Maximum Entropy Algorithm (cont)

• easy to include a priori information with default image
– flat default best only if nothing known (or nothing observed!)

• straightforward to generalize χ2 to combine different 
observations/telescopes and obtain optimal image

• many measures of “entropy” available 
– replace log with cosh  “emptiness” (does not enforce positivity)

• less robust and harder to drive than CLEAN
• works well on smooth, extended emission 
• trouble with point source sidelobes
• no noise estimate possible from image
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Maximum Entropy

restored 
image

residual 
map

MAXEN 
model

TD(x,y)



Imaging Results
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Natural Weight Beam CLEAN image



Imaging Results
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Uniform Weight Beam CLEAN image



Imaging Results
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Robust=0 Beam CLEAN image



Imaging Results
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Robust=0 Beam MAXEN image
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Tune Resolution/Sensitivity to suit Science

• e.g. Andrews, Wilner et al. 2009, ApJ, 700, 1502
– SMA 870 µm images of “transitional” protoplanetary disks 

with resolved inner holes, note images of WSB 60

500 AU



Missing Short Spacings

61

Do the visibilities in the example discriminate between 
these models of the sky brightness distribution, T(x,y)?

Yes… but only on baselines shorter than ~100 kλ



>100 kλ CLEAN ImageCLEAN Image

Missing Short Spacings: Demonstration
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T(x,y)
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Low Spatial Frequencies (I)

• Large Single Telescope
– make an image by scanning across the sky
– all Fourier components from 0 to D sampled, where D is the 

telescope diameter (weighting depends on illumination)

– Fourier transform single dish map = T(x,y)  A(x,y), then divide 
by a(x,y) = FT{A(x,y)}, to estimate V(u,v)

– choose D large enough to overlap interferometer samples of 
V(u,v) and avoid using data where a(x,y) becomes small

density of 
uv points

(u,v)
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Low Spatial Frequencies (II)

• separate array of smaller telescopes 
– use smaller telescopes observe short baselines not 

accessible to larger telescopes
– shortest baselines from larger telescopes total power maps

 

   ALMA with ACA

  50 x 12 m:   12 m to 14 km

+12 x   7 m:   fills 7 to 12 m
 + 4 x 12 m:   fills 0 to   7 m
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Low Spatial Frequencies (III)

• mosaic with a homogeneous array
– recover a range of spatial frequencies around the nominal 

baseline b using knowledge of A(x,y) (Ekers and Rots 1979) 
(and get shortest baselines from total power maps)

– V(u,v) is linear combination of baselines from b-D to b+D
– depends on pointing direction (xo,yo) as well as (u,v)

– Fourier transform with respect to pointing direction (x o,yo) 

(u,v)



• “dynamic range”
– ratio of peak brightness to rms noise in a region                                    void of 

emission (common in astronomy)
– an easy to calculate lower limit to the error in                                 brightness in a 

non-empty region

• “fidelity”
– difference between any produced image and the correct image
– a convenient measure of how accurately it is possible to make an image that 

reproduces the brightness distribution on the sky
– need a priori knowledge of correct image to calculate

– fidelity image = input model / difference                                                                  
                          = model     beam  / abs( model     beam – reconstruction )
– fidelity is the inverse of the relative error
– in practice, lowest values of difference need to be truncated

Measures of Image Quality

66



Measures of Image Quality
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• ALMA Level 1 Science Goal #3
– ALMA will have: The ability to provide precise images at an angular resolution of 0.1".  Here 

the term precise image means accurately representing the sky brightness at all points where 
the brightness is greater than 0.1% of the peak /image brightness.

ALMA Memo #387
Pety et al.
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Self Calibration
• a priori calibration not perfect

– interpolated from different time, different sky direction from source
• basic idea of self calibration 

– correct for antenna-based errors together with imaging
• works because 

– at each time, measure N complex gains and N(N-1)/2 visibilities
– source structure represented by small number of parameters
– highly overconstrained problem if N large and source simple

• in practice, an iterative, non-linear relaxation process 
– assume initial model  solve for time dependent gains  form new sky 

model from corrected data using e.g. CLEAN  solve for new gains…
– requires sufficient signal-to-noise ratio for each solution interval

• loses absolute phase and therefore position information
• dangerous with small N, complex source, low signal-to-noise
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Concluding Remarks

• interferometry samples visibilities that are related to a sky 
brightness image by the Fourier transform

• deconvolution corrects for incomplete sampling

• remember… there are usually an infinite number of 
images compatible with the sampled visibilities

• astronomer must use judgement in imaging process
• imaging is generally fun (compared to calibration)

• many, many issues not covered today (see References)
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