Astrometry Mark J. Reid Harvard-Smithsonian CfA

"From little things, big things grow..." "Success is in the details" Bruce Springsteen/Paul Kelly Chinese fortune cookie

Where is the Galactic Center?

- $A_v \sim 30$ mag; $A_\kappa \sim 3$ mag
- Many bright young stars
- But, no obvious AGN (Sgr A*)

Where is Sgr A*?

Infrared K-band (2 μ m) image

The Centre of the Milky Way (VLT YEPUN + NACO) ESO PR Photo 23a/02 (9 October 2002) © European Southern Observatory

+ES

Where is the Galactic Center?

(DERTR) DER

Red Giant SiO Maser Stars

Where is Sgr A* (IR)

Use radio "grid";solve for

- IR plate scale
- IR plate rotation
- IR (low order) distortions

- Sgr A* very dark
- Allows accurate orbit measurements

Subtle Effects

Micro-arcsec Astrometry with the VLBA

Fringe spacing:

 $\theta_{\rm f} \sim \lambda/D \sim 1 \ {\rm cm} \ / \ 8000 \ {\rm km} = 250 \ {\rm \mu as}$

Centroid Precision:

 $0.5 \theta_{f} / SNR \sim 10 \mu as$

Systematics:

path length errors ~ 2 cm (~2 λ)

shift position by ~ $2\theta_f$

Relative positions (to QSOs):

 $\Delta \Theta \sim 1 \text{ deg } (0.02 \text{ rad})$

cancel systematics: $\Delta \Theta * 2\theta_f \sim 10 \mu as$

Sgr A* Proper Motion

Sgr A* Proper Motion

IR Stellar Orbits: $M_{\mathbb{R}} \sim 4 \ge 10^6 M_{sn}$ R < 50 AURadio Observations: Sgr A* motionless \rightarrow M > 10% of $M_{\mathbb{R}}$

Observed size: R < 0.5 AU

IR + Radio data combined: Dark mass = luminous source Density > 10²² M_{sn} /pc³

Overwhelming evidence for a Super-Massive Black Hole How do we make such measurements?

Fix phase errors in VLBA correlator model:

- Parallactic Angle (feed rotation effect)
 CLCOR
- Atmospheric zenith delays ("geodetic" blocks)
 DELZN/CLCOR
- Ionospheric zenith delays (global electron models) TECOR
- Earth's Orientation Parameter errors
 CLCOR
- Source coordinate errors (if known)
 CLCOR

Calibrate amplitudes (correlation coefficient \rightarrow flux density):

- Correct for clipper bias
- Apply system temperatures/gain curves

CLCAL APCAL/CLCAL

Align electronic phase shifts among bands:

- Determine band phases on strong source FRING
- Correct all data
 CLCAL

Fix spectral drift (Doppler shift from Earth's rotation)

- Apply bandpass corrections (if necessary) BPASS
- Fourier transform to delays,

Apply phase-slope across delay function,

Inverse Fourier transform back CVEL

Phase reference data to 1 source / band / spectral channel :

• Calculate phase reference

• Apply phases to all data

CALIB or FRING

CLCAL

What limits positional accuracy? ...

Signal to Noise Limitations

$$\sigma_{S} = \frac{b \text{ SEFD}}{\sqrt{2B\tau N(N-1)/2}} \approx 0.2 \text{ mJy}$$

$$b = 1.2$$

$$2B = 512 \times 10^{6} \text{ Hz}$$

$$\tau = 3,600 \text{ sec}$$

$$N = 10 \text{ antennas}$$

$$\text{SEFD} = 1500 \text{ Jy}$$

 $\sigma_{\theta} = 0.5 \text{ FWHM/SNR} \approx 0.05 (S/2 \text{ mJy})^{-1} \text{ mas}$ $\text{FWHM} \approx 1 \text{ mas}$ $\text{SNR} \approx 5S(\text{mJy}) \quad (= S / \sigma_S)$

Systematic Limitations

 $\sigma_{\theta} = \text{FWHM} (c \ \Delta \tau / \lambda) \ \Delta \theta \approx 0.05 \text{ mas}$

 $c \ \Delta \tau \approx c \ \Delta \tau_0 \ \sec ZA \tan ZA$

FWHM $\approx 1 \text{ mas}$ $c \ \Delta \tau_0 \approx 1 \text{ cm}$ $ZA \approx 60 \text{ deg}$ $\lambda \approx 1.3 \text{ cm}$ $\Delta \theta \approx 1 \text{ deg}$

(will explain formula later)

Note: σ_{θ} independent of λ , since FWHM ~ λ /D

Signal to Noise vs. Systematic Limitations $\sigma_{\theta} \text{ (noise)} \approx 0.05 \ (S/2 \text{ mJy})^{-1} \text{ mas}$ σ_{θ} (systematics) $\approx 0.05 \ (c\Delta \tau/4 \ {\rm cm})$ mas Typically, σ_{θ} (noise) $< \sigma_{\theta}$ (systematics) for S > 2 mJy

If S > 2 mJy, use more observing time to calibrate.

Atmospheric & Ionospheric Errors

Frequency (maser) Un-modeled¹ zenith path length Atmosphere

lonosphere²

43 GI	Hz (SiO)	5 cm	0.5 cm
22	(H ₂ O)	5	2
12	(CH ₃ OH)	5	6
6.7	(CH ₃ OH)	5	20
1.6	(OH)	5	300

¹ After removing VLBA correlator model

² Highly variable night-to-day and with solar cycle. Can be partially corrected with global models of total electron content.

Relative Atmospheric Delay Errors

 $au_A \approx au_0 \ \sec ZA$

Difference between target and reference sources:

 $\Delta \tau_A = \left(\frac{\partial \tau_A}{\partial ZA}\right) \Delta ZA$ $\Delta \tau_A = \tau_0 \ \sec(ZA) \ \tan(ZA) \ \Delta ZA$

Note: $\sec(ZA) \tan(ZA) \approx 3.5$ for $ZA = 60^{\circ}$ $\sec(ZA) \tan(ZA) \approx 8.0$ for $ZA = 70^{\circ}$

Effect of Separation of Target and Reference Source

G048.61+0.02 maser phase reference

J1917+1405: $(\Delta \theta_x, \Delta \theta_y) = (-0.8, +0.2) \text{ deg}$

J1913+1307: $(\Delta \theta_x, \Delta \theta_y) = (-1.8, -0.8) \text{ deg}$

J1924+1540: $(\Delta \theta_x, \Delta \theta_y) = (+1.0, +1.8) \text{ deg}$

Typical Observing Sequence

Atmospheric Delay Calibration

- Goal: measure zenith delay (τ₀) above each antenna
- Spread observing bands to cover 500 MHz $\sigma_{\tau} \sim (1/BW) * (1/SNR)$
- Observe QSOs over range of elevations
- Fit multi-band delays to atmospheric model:

 $\sigma_{_{\rm TO}}$ ~ 1 cm accuracy

Position Errors

Effects of position error of phase reference source:

Target \rightarrow Reference $\Delta \Theta$ = 1 degree

Position Errors

Effects on target of position error of phase reference source:

- 1st order correction: position shift of Target
- 2rd order corrections: small shift of Target distorts image

Target \rightarrow Reference $\Delta \Theta$ = 1 degree

Reference pos. err σ_{θ} = 0.1 arcsec

Need reference position accurate to ~10 mas

Position Errors: Reference Phases

Improving Reference Source Position

Measure with VLA: need largest (A) configuration ~10 mas accuracy

Measure with VLBA snapshots: Fit multi-band delays (QSOs) ~1 mas acuracy Fit fringe rates (masers) ~50 mas accuracy

Before and After Images

with ~0.3 arcsec error in reference position

Lunar Parallax

Hipparchus (189 BC)

Pete Lawrence's Digitalsky: http://www.digitalsky.org.uk

Stellar (Annual) Parallax

d(pc) = 1 / p(arcsec)

1 pc = 206,000 AU = 3 x 10¹³ km = 3.26 light-years

Some parallax values: Moon: $p \sim 0.1 \text{ deg}$ Nearest stars: $p \sim 1 \text{ arcsec}$ Gal. Center: $p \sim 0.1 \text{ mas}$ Nearby galaxy: $p \sim 1 \mu as$

Parallax 1.01

Milky Way Parallaxes

Distance estimates: Kinematic = 4.3 kpc Photometric = 2.2 kpc (R. Humphreys 1970's)

T. Megeath (Spitzer Space Telescope)

W3OH Parallax

Xu, Reid, Zheng & Menten (2006)

 π = 0.512 +/- 0.010 mas

W3OH Parallax

- $D_{prob} \sim D_{paralax}$
- D_k way off
- In Perseus Arm, not in Outer Arm
- Large peculiar V

Least–Squares Fitting

Goal: Minimize $\chi^2 = \sum_{i=1}^{N} (d_i - m_i)^2$ where d_i is i^{th} datum and m_i is its model value. Taylor expand model about M parameters, x_j :

$$m_i = m_i \Big|_0 + \sum_{j=1}^M \left(\frac{\partial m_i}{\partial x_j}\right)\Big|_0 \Delta x_j$$

Experiment Design

Least–squares solution: $\vec{\Delta x} = (P^T P)^{-1} P^T \vec{r}$ where $P = \text{Matrix} \left[\frac{\partial m_i}{\partial x_j}\right]$

"Design matrix" $(P^T P)^{-1}$

diagonal elements give parameter uncertainties (variances) off-diagonals give parameter co-variances (correlations) Note: don't need data to estimate parameter uncertainties!

Parallax Design

"Design matrix"
$$(P^T P)^{-1}$$

where $P = \text{Matrix} \left[\frac{\partial m_i}{\partial x_j}\right]$

Parallax model: $m_i = \Pi \cos(\omega \Delta t_i) + \alpha_0 + \mu_\alpha \Delta t_i$

where
$$x_1 = \Pi$$
, $x_2 = \alpha_0$, and $x_3 = \mu_{\alpha}$

$$P_{i1} = \frac{\partial m_i}{\partial \Pi} = \cos(\omega \Delta t_i)$$
$$P_{i2} = \frac{\partial m_i}{\partial \alpha_0} = 1$$
$$P_{i3} = \frac{\partial m_i}{\partial \mu_\alpha} = \Delta t_i$$

$$P = \begin{bmatrix} \cos(\omega\Delta t_1) & 1 & \Delta t_1 \\ \cos(\omega\Delta t_2) & 1 & \Delta t_2 \\ \dots & \dots & \dots \\ \cos(\omega\Delta t_N) & 1 & \Delta t_N \end{bmatrix}$$
$$P^T P = \begin{bmatrix} \sum \cos^2(\omega\Delta t_i) & \sum \cos(\omega\Delta t_i) & \sum \cos(\omega\Delta t_i) \Delta t_i \\ \sum \cos(\omega\Delta t_i) & \sum 1 & \sum \Delta t_i \\ \sum \cos(\omega\Delta t_i) \Delta t_i & \sum \Delta t_i & \sum \Delta t_i^2 \end{bmatrix}$$

If data symmetric about t = 0, off-diagonal terms $\rightarrow 0$

$$(P^{T}P)^{-1} = \begin{bmatrix} 1/\sum \cos^{2}(\omega\Delta t_{i}) & 0 & 0\\ 0 & 1/\sum 1 & 0\\ 0 & 0 & 1/\sum \Delta t_{i}^{2} \end{bmatrix}$$

N = 5

$$\sigma_{\pi} = 1 / \text{sqrt}(2) = 0.7$$

N = 5
 $\sigma_{\pi} = 1 / \text{sqrt}(3) = 0.6$

$$\sigma_{\pi} = 1 / \text{sqrt}(4) = 0.5$$

$$\sigma_{\pi} = 1 / \text{sqrt}(\Sigma \cos^2 \omega t)$$

Extragalactic Proper Motions

Parallax accuracy: 10% at 10 kpc not good enough for galaxies

Proper motion:

same techniques as Parallax, but accuracy ~ T³²

M33 project (A. Brunthaler thesis)1) see spin (van Maanen)2) see motion

