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 

SNR  SsrcAeff tintΔν

 

SNR  SsrcAeff tintΔν

Coherent amplifiers + Xcorr Mirrors + CCDs
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Some definitions

 

Iν  (or Bν ) =  Surface Brightness :  erg/s/cm2/Hz/sr
(=  intensity)

Sν  =  Flux density :    erg/s/cm2/Hz  IνΔΩ
S =  Flux :  erg/s/cm2 IνΔΩΔν
P =  Power received :  erg/s IνΔΩΔνΔAtel
E =  Energy :  erg  IνΔΩΔνΔAtel Δt



Radiometer Equation (interferometer)

Physically motivate terms  

• Photon statistics: wave noise vs. shot noise (radio vs. optical)

• Quantum noise  of coherent amplifiers

• Temperature in Radio Astronomy (Johnson-Nyquist resistor 
noise, Antenna Temp, Brightness Temp)

• Number of independent measurements of wave form (central 
limit theorem)

• Some interesting consequences

 

Srms 
2kTsys

Aeff NA (NA  1)tintΔν



Concept 1: Photon statistics = Bose-Einstein statistics for gas without 
number  conservation 

Thermal equilibrium => Planck distribution function (Reif 9.5.4)

 ns = photon occupation number, relative number in state s   

     = number of photons in standing-wave mode in box at temperature T  

     = number of photons/s/Hz  in (diffraction limited) beam in free space a 
(Richards 1994, J.Appl.Phys)

Photon noise: variance in # photons arriving each second in free space beam

 

Δns
2  ns  ns 

2
 ns  ns

2

ns PoissonStats(ns 1) shot noise (noise   ns )

ns
2
Wave noise  (ns 1) (noise   ns)

 

ns  ehν s /k T  1 
 1

(Reif 9.5.6)

aConsider TB = Tsys  for a diffraction limited beam

Optical

Radio



Physical motivation for wave noise: coherence

  

 

Single Source :IV2 '1 photon'

Two  incoherent sources :I  V1
2 +  V2

2  '2 photons'

Two  coherent sources :I 
 v

V 1 +  
v 
V 2 

2
'0 to4 photons'



 ‘Bunching of Bosons’: photons can 
occupy exact same quantum state. 
Restricting phase space (ie. 
bandwidth and sampling time)  leads 
to interference within the beam. 

“Think then, of a stream of wave packets each about c/Δν long, in 
a random sequence. There is a certain probability that two such 
trains accidentally overlap. When this occurs they interfere and one 
may find four photons, or none, or something in between as a 
result. It is proper to speak of interference in this situation because 
the conditions of the experiment are just such as will ensure that 
these photons are in the same quantum state. To such interference 
one may ascribe the ‘abnormal’ density fluctuations in any 
assemblage of bosons.”  (= wave noise)

Purcell 1956, Nature, 178, 1449

h

h

h



Photon arrival time
Probability of detecting a second photon after interval t in a beam of linearly 
polarized light with bandwidth Δν (Mandel 1963). Exactly the same factor 2 as 
in Young 2-slit experiment!

Photon arrival times are 
correlated on timescales 
~ 1/Δν leading to  
fluctuations  total flux, 
ie. fluctuations are 
amplified by constructive 
or destructive 
interference on 
timescales ~ 1/ Δν

Δνt

2nd  photon knows about 1st  

2nd  photon ignorant of 1st  



RJ Wien

When is wave 
noise important?
• Photon occupation 
number in CMB 
(2.7K)

• CMB alone is 
enough to put radio 
observations into 
wave noise regime

 

Wien: ns 1 noise ns (countingstats)
RJ: ns 1 noise  ns (wavenoise)

 

Bν 
2hυ 3

c 2 ns

 

ns  ehν s /k T  1 
 1

1n s 

40GHz



Photon occupation number: examples

 

CygnusA at 1.4GHz at  VLA :  TA 140K hν
k T

0.0005

 ns(e
hν
kT -1) 12000Hz 1 sec 1∴wave noise dominated

 

Betelgeuse resolved by HST : TB 3000K hν/kT8
 ns 0.0003Hz 1 sec  1 ∴counting noise dominated

 

Quasar at z = 4.7 with VLA : S1.4GHz 0.2mJy  (10-7  x CygA)
TA 0.02mK hν /k T3000 ∴ns 1
Why do we still assume wave noise dominates in sens. equ?
Answer :  TBG >  2.7K ensures ns >  1 always at cm wavelengths.

Bright radio source

Optical source

Faint radio source

Night sky is not dark at radio frequencies!



In radio astronomy, the noise statistics are 
wave noise dominated, ie. noise limit is 
proportional to the total power, ns, and not 
the square root of the power, ns

1/2

Wave noise: summary

 

Optical =  Wien: ns 1 noise ns (countingstats)
Radio =  RJ: ns 1 noise  ns (wavenoise)



Concept 2: Quantum noise of coherent amplifiers
Phase conserving electronics => Δφ < 1 rad 

 

Uncertainty principle for photons :
ΔE Δt h
ΔE hν Δns

Δt 
Δφ
ν2π

 ΔφΔns 1 rad  Hz  1 sec  1∴Δφ 1rad  Δns 1
Phase conserving amplifier has minimum noise: n s = 1 => 
puts signal into RJ regime = wave noise dominated.

Quantum limit:

 

ns (ehν / kT  1) 1 
Tmin hν/k



Quantum noise: Einstein Coefficients and masers  

 

Radiative Transfer :
I
x


hν
c

Bijni  Bjin j  IAijni
hν
4π

Stimulated  emissionBij     
Absorption : giBji g jBij

Spontaneous  emission Aij 
8πhν 3

c3 Bij

Stimulated
Spontaneous



hν
c

Bijni I

hν
4π

Aijni


c2I

2hν 3

 

Iν Bν 
2kν 2

c2 TB 
2k
λ2 TB

Stimulated
Spontaneous


k TB

hν
1       Tmin 

hν
k

Rohlfs & Wilson equ 11.8 –
11.13

Stimluated emission => 
pay price of 
spontaneous emission



Consequences: Quantum noise of coherent amplifier (nq = 1)  

ns>>1 => QN irrelevant, use 
phase coherent amplifiers

Good: adding antennas 
doesn’t affect SNR per pair, 
Polarization and VLBI! 

Bad: paid QN price

ns<<1 => QN disaster, use 
beam splitters, mirrors, and 
direct detectors

Good: no receiver noise

Bad: adding antenna lowers 
SNR per pair as N2

Coherent 
amplifiers

Mirrors +  beam 
splitters

Direct detector: CCD
Xcorr ‘detection’



Concept 3: What’s all this about temperatures? Johnson-
Nyquist electronic noise of a resistor at TR



Johnson-Nyquist 
Noise

<V> = 0,  but <V2>  0

T1 T2

Thermodynamic equil:  T1 = T2

“Statistical fluctuations of electric charge in all conductors produce random 
variations of the potential between the ends of the conductor…producing 
mean-square voltage”  => white noise power, <V2>/R, radiated by resistor, TR 

Analogy to modes in black body cavity (Dickey):

• Transmission line electric field standing wave modes: ν = c/2l, 2c/2l… Nc/2l

• # modes (=degree freedom) in ν + Δν:   <N> = 2l Δν / c

• Therm. Equipartion law: energy/degree of freedom: <E> ~ kT  

• Energy equivalent on line in Δν:  E = <E> <N> =   (kT2lΔν) / c

• Transit time of line: t ~ l / c 

• Noise power transferred from each R to line ~ E/t = PR = kTR Δν  erg s-1



Johnson-Nyquist Noise

kB = 1.27e-16 +/ 0.17 erg/K

Noise power is strictly function of TR, not function of R or material.

Thermal noise: 

<V2>/R = white noise power

TR

PR



Antenna Temperature
In radio astronomy, we reference power received from the 
sky, ground, or electronics, to noise power from a load 
(resistor) at temperature, TR = Johnson noise

Consider received power from a cosmic source, Psrc

• Psrc  = Aeff Sν Δν  erg s-1

• Equate to Johnson-Nyquist noise of resistor at TR:   PR = kTR Δν

• ‘equivalent load’ due to source = antenna temperature, TA: 

    kTA Δν = Aeff Sν Δν   =>   TA = Aeff Sν / k



Brightness Temperature
• Brightness temp = surface brightness  (Jy/SR, Jy/beam, Jy/arcsec 2)

•TB = temp of equivalent black body, Bν,  with surface brightness =  
source surface brightness at ν:  Iν = Sν / Ω = Bν= kTB/ λ2 

• TB = λ2 Sν / 2 k Ω

• TB = physical temperature for optically thick thermal object

• TA <= TB  always  

 Source size > beam  TA = TB
a

 Source size < beam  TA < TB

beam

source

telescope

TB

Explains the fact that 
temperature in focal 
plane of telescope 
cannot exceed TB,src  

a Consider 2 coupled horns in equilibrium, and the fact that T B(horn beam) = Tsys



Radiometry and Signal to Noise

Concept 4: number of independent measurements
• Limiting signal-to-noise (SNR): Standard deviation of the mean

• Wave noise (ns > 1):  noise per measurement = (variance)1/2  =  <ns> 

=>  noise per measurement  total noise power  Tsys

• Recall, source signal = TA 

• Inverting, and dividing by signal, can define ‘minimum detectable signal’:

 

 

ΔTlim   =
Tsys

#  independent measurements

 

SNR lim  =  Signal 
Noise per measurement

  #  of independent measurements

 

SNR lim  =  TA

Tsys

 #  independent measurements



Number of independent measurements

 

How many independent measurements are made by single 
interferometer (pair ant) for total time, t, over  bandwidth, Δν?

Return to uncertainty relationships:

ΔEΔt = h

ΔE = hΔν

ΔνΔt = 1  

Δt = minimum time for independent measurement = 1/Δνa

# independent measurements in t = t/Δt =   t Δν

aMeasurements on shorter timescales provide no new information, eg. consider 
monochromatic signal => t  ∞ and single measurement dictates waveform ad infinitum



General Fourier conjugate variable relationships

• Fourier conjugate variables: frequency –  time

• If V(ν) is Gaussian of width Δν, then V(t ) is also Gaussian of width 
= Δt = 1/Δν

• Measurements of V(t) on timescales Δt < 1/Δν are correlated, ie. 
not independent

• Restatement of Nyquist sampling theorem: maximum information 
on band-limited signal  is gained by sampling at t < 1/ 2Δν. Nothing 
changes on shorter timescales.

Δt =1/Δν

Δν



Response time of a bandpass filter

Vin(t) = δ(t) 

Response time: Vout (t) ~ 1/Δν

Response of RLC (tuned) 
filter of bandwidth Δν  to 
impulse V(t) = δ(t) : decay 
time  ~ 1/Δν. 
Measurements on shorter 
timescales are correlateda.

Δν Vout (t) ~ 1/Δν

aclassical analog’ to concept 1 = correlated arrival time of photons 



Interferometric Radiometer Equation

 

ΔTlim  =   
Tsys

#  independent measurements


Tsys

Δνt
Interferometer pair: 

Antenna temp equation: ΔTA = Aeff  ΔSν / k

 

ΔSlim  =   
kTsys

Aeff Δν t
Sensitivity for interferometer pair:

Finally, for an array, the number of independent measurements at 
give time = number of pairs of antennas = NA(NA-1)/2

 

ΔSlim  =   
kTsys

Aeff NA (NA  1)Δν t
Can be generalized easily to: # polarizations,  inhomogeneous arrays 
(Ai, Ti), digital efficiency terms…



Fun with noise: Wave noise vs. counting statistics• Received source power ~ Ssrc  × Aeff

• Optical telescopes (ns < 1) =>  rms ~ Nγ
1/2  

Nγ  Ssrc Aeff     => SNR = signal/rms   (Aeff )1/2

• Radio telescopes (ns > 1) =>  rms ~ ‘Nγ’

‘Nγ’  Tsys  = TA + TRx  + TBG  + Tspill      

 Faint source: TA  << (TRx  + TBG  + Tspill ) => rms dictated by 
receiver  => SNR  Aeff

 Bright source: Tsys ~ TA   Ssrc Aeff  => SNR independent of Aeff  



Quantum noise and the 2 slit paradox: wave-particle duality  

Interference pattern builds up even with photon-counting experiment.

Which slit does the photon enter?  With a phase conserving amplifier it seems one 
could replace slit with amplifier, and both detect the photon and ‘build-up’ the 
interference pattern (which we know can’t be correct). But quantum noise dictates 
that the amplifier introduces 1 photon noise, such that:  

                                              ns = 1 +/- 1

and we still cannot tell which slit the photon came through! 

f(τ)



Intensity Interferometry: ‘Hanbury-Brown – Twiss Effect’  Replace 
amplifiers with square-law detector (‘photon counter’). This destroys 
phase information, but cross correlation of intensities still results in a 
finite correlation! Exact same phenomenon as increased correlation for t 
< 1/Δν in photon arrival time (concept 1), ie. correlation of the wave 
noise itself.

Disadvantage: No visibility phase information

                        Lower SNR 

Advantage: timescale = 
1/Δν   not 1 ν      insensitive to poor optics, 
‘seeing’

• Voltages correlate on timescales ~ 1/ν    with 
correlation coef, γ

• Intensities correlate on timescales ~ 1/Δν   with 
correlation coef, γ2 



 

Srms 
2kTsys

Aeff NA (NA  1)tintΔν

Interferometric Radiometer Equation

• Tsys  = wave noise for photons: rms  total power

• Aeff ,kB = Johnson-Nyquist  noise + antenna temp 
definition 

• tΔν = # independent measurements of TA/Tsys per pair 
of antennas

• NA = # indep. meas. for array



ESO

END
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Electron statistics: Fermi-Dirac (indistiguishable particles, but number of 
particles in each state = 0 or 1, or  antisymmetric wave function under particle 
exchange, spin ½)   

0variancefilledarestatesall1nmaximumeg. s ∴
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Quantum limit VI: Heterodyne vs. direct detection interferometry

   

 

 

  upTossN/4
SNR
SNR

2
Tk
νhK10T

:Jy)(200GHz350atOrion

winsHeterodyne2000N
SNR
SNR

0.0005
Tk
νhK140T

:GHz1.4atVLAwithACygnus

winsDDN/400
SNR
SNR

Hz5e14at8 /kThν  K   3000T            
40masbeamlimitedndiffractioSize:HSTwithBetelgeuse

elementsofnumberNwhere,
νΔ
νΔNn1)N/(e

SNR
SNR

1/2

DD

Het

A

2/1

DD

Het

A

1/2

DD

Het

B

2/1

DD

Het2/1
s

Tk/νh

DD

Het























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