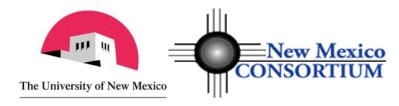
ARRAY DESIGN AND SIMULATIONS


Craig Walker NRAO

Based in part on 2008 lecture by Aaron Cohen

TALK OUTLINE STEPS TO DESIGN AN ARRAY

- Clarify the science case
 - Determine the technical requirements for the key science
- Specify the resolution, field of view, sensitivity, frequency range
- Specify the antenna type, size, and performance
- Choose site
- Design and optimize the configuration
- Also required, but not covered further
 - Find money
 - Hire the best engineers you can find!
 - Design feeds, receivers, LO/IF systems, data transmission
 - Design a correlator

SCIENCE REQUIREMENTS

- No one array can do everything. What is yours for?
- Extreme examples:
 - Epoch or reionization requires low resolution, low frequency
 - Star formation, black holes, accretion disks and jet launch require high resolution and high frequency
- Determine the technical requirements of each major element of the science case
- Generate specifications for the array based on the science drivers
- Don't be surprised when the actual science done differs from the Science case.
 - Make the array flexible.

CASE STUDY SKA KEY SCIENCE DRIVERS

- SKA project identified 5 key science drivers
 - 1. Cradle of Life
 - Astrobiology, planet detection, SETI
 - 2. Probing the Dark Ages
 - Epoch of reionization, redshifted CO, first AGNs
 - 3. The origin and evolution of Cosmic Magnetism
 - 4. Strong field tests of gravity using pulsars and black holes
 - 5. Galaxy evolution, cosmology and dark ages
 - 6. (Exploration of the Unknown)

TECHNICAL REQUIREMENTS OF SKA KEY SCIENCE PROJECTS

- A very big array with very broad capabilities is required to do everything!
- Cost in billions of dollars.

Table 4. Desired specification	its for the SKA	
--------------------------------	-----------------	--

KSP ID	KSP Description	Frequency Range GHz			FoV	Sens- itivity	Survey Speed	Resn.	Base- line	Dyn. Range Driver	
		01.0	3 10 3.0	10.30	deg	m ² /K	deg'm"K ?	1146	Km		
1 1a ¹	The Dark Ages EoR						>~3x10 ²				
16	First Metals			_	0.003	15.000		50	125		
10	First Galaxies & BHs.		-			20,000		10	4500		
2	Galaxy Evolution, Cosmology & Dark Energy										
28	Dark Energy		-				6x10*		5		
2b [†]	Galaxy Evolution		_			20,000	1×10*		10		
20	Local Cosmic Web		-				2×10'		0.5		
3	Cosmic Magnetism										
3a ⁷	Rotation Measure Sky		-				2x10*		10-30		**
36	Cosmic Web	-	-				1x10 ⁴		5		**
4	GR using Pulsars & Black Holes										
	Search		-				1×10 ⁸		<1		
48'	Gravitational Waves		-	-		≥15,000		1	200		**
4b	BH Spin		-	-	1	10,000					**
4c [†]	Theories of Gravity		-	-		>15,000		1	200		**
5	Cradle of Life										
5a [†]	Proto-planetary Disks			-	0.003	10,000		2	1000		
5b	Prebiotic Molecules		-	++	0.5-1	10,000		100	60		
5c	SETI		-	-1	1						
6	Exploration of the Unknown	_		-	Large	Large	Large				

Headline science, see Section 3.2

* See Section 5.1.8 for explanation of Dynamic Range drivers

чт

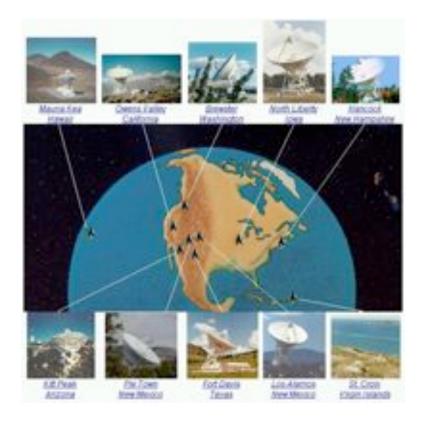
** See Section 5.1.6 for explanation of Polarisation Purity

THE UNIVERSITY OF INCW INCAME

divers

Twelfth Synthesis Imaging Workshop

RESOLUTION


- Resolution = λ/B_{max}
- High resolution is used to study hot or non-thermal sources and for astrometry
 - Requires high frequencies and long baselines
 - Radio arrays can use unlimited baseline lengths
 - VLBI commonly uses baselines up to near an Earth diameter
 - Longer baselines possible with spacecraft (HALCA)
- Low resolution is required to see low brightness sources
 - Brightness temperature S =2kT_B Ω / λ^2
 - Ω is set by the smaller of the beam and the source
 - To detect low T_B sources, need large Ω (short baselines)
 - Cannot detect low brightness, compact sources too weak
- A general purpose instrument will need a wide range of resolutions

EXTREME BASELINE EXAMPLES

- ALMA compact configuration
- Good for large, diffuse sources

- VLBA Continental or more in scale
- Good for very high brightness sources and astrometry.

New Mexico

Twelfth Synthesis Imaging Workshop

SENSITIVITY AND SURVEY SPEED

- The sensitivity and survey speed requirements will determine the scale and cost of the array
- Sensitivity depends on collecting area, system temperature and bandwidth $~(N_{ant}~D^2/~Ts)~\Delta\upsilon^{0.5}$
 - This is what matters for sources smaller than a beam
- For observations over many beam areas, the "survey speed" matters
 - Field of view times sensitivity squared
 - N_{beams} λ^2 (N_{ant} D / Ts)² $\Delta \upsilon$
 - N_{beams} is the number of independent primary beams
 - Maximize for surveys
 - Maximize for sources that are large big mosaics
 - Favor small antennas and multiple beams
 - Might choose to sacrafice some sensitivity (eg high Ts)

FIELD SIZE

- Reasons for large fields of view:
 - Surveys want to cover lots of sky
 - Large sources (galactic clouds, nearby galaxies etc)
- Reasons for small fields of view:
 - Less trouble with confusion
 - Fewer baselines required, easier processing
 - Can afford more sensitive receivers, wider bandwidth etc.
- For wide fields:
 - Small antennas with large beams but need many
 - Multiple beam receiving systems lots of electronics
- For small fields can use large individual antennas
 - But cost scales faster than area, so don't go too big

FIELD SIZE EXAMPLES

- EVLA: 25m antennas primary beam 30' at 1.4 GHz.
 - Good for sensitivity and wide frequency coverage
 - Slow for surveys
- ALMA: 50 X 12m antennas + 12 X 7m antennas (+ 4 X 12m for total power)
 - Compromise between sensitivity for extragalactic sources vs ability to observe large galactic objects
 - The 7m antennas and total power antennas were add by Japan to do large sources
- VLBA: 10 X 25m antennas, but individual fields limited by delay and rate smearing to a few arcseconds. Not for blind surveys!
- LWA, MWA, LOFAR: Fixed aperture arrays. In principle, with enough electronics, could observe the whole sky.
- WSRT, ASKAP: Feed arrays for multiple beaming

COST VS ANTENNA DIAMETER

- Traditional antenna cost scales as D^{2.7}
- Number of antennas scales as D⁻² for constant area
- Total cost for all antennas scales as D^{0.7} Favors smaller antennas.
- But many items scale with N_{ant} and N_{beams}
 - Receiver electronics, LO/IF, data transmission, station sections of correlator
- Baseline sections of correlator scale with N_{beams} and N_{ant}^2
- Optimum has a broad minimum favoring 10 to 20 m antennas.

ANTENNA DESIGN: FREQUENCY RANGE

- The frequency range strongly influences the type and cost of the antennas and receivers
 - Low frequencies (< 3 GHz very roughly)
 - Less demanding for accuracy
 - Can get large collecting area at low cost
 - Can use aperture arrays of fixed elements
 - Limited by ionosphere at low end
 - High frequencies (> 3 GHz very roughly)
 - Almost certainly will use dishes and cryogenic receivers
 - Higher frequencies require more accurate surfaces
 - High demands on pointing accuracy
 - Complicated choice still not clear for SKA

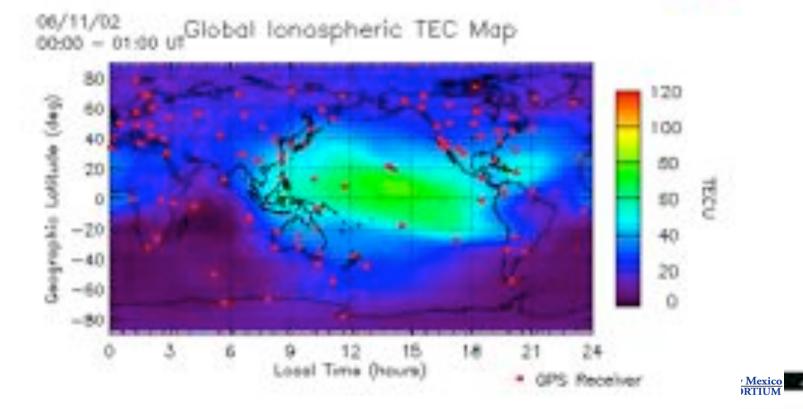
ANTENNA TECHNOLOGIES

- MWA 80-300 MHz. Steered by phasing fixed elements
- MeerKAT prototype 15m composite antenna (South Africa)

The University of New Mexic

New Mexico

Twelfth Synthesis Imaging Workshop


LOCATION

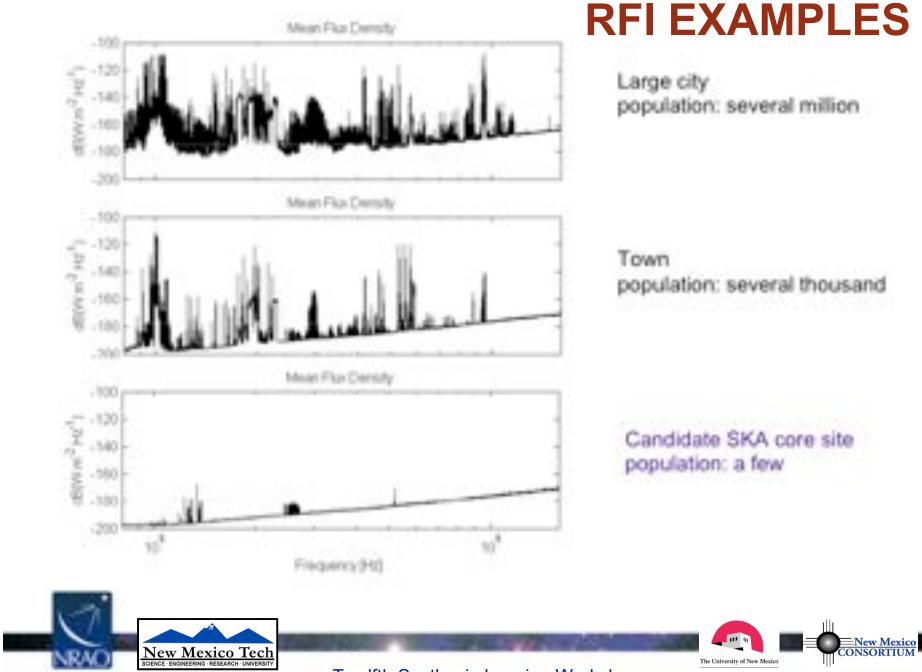
- Location is an important decision with large performance, operations, financial, and political considerations
- At high frequencies, want high altitude and dry climate (ALMA)
- At low frequencies, want protection from RFI (SKA)
- At low frequencies, avoid regions with worst ionosphere (SKA etc)
- Site must be large enough to accommodate the array
- Need reasonable access and place to live for staff and their families
 - Not everyone can work remotely
- Need power, communications. Expensive if need to provide own, especially to outer stations.

IONOSPHERE

- Can seriously complicate the calibration of low frequency data
- Concentrated near the subsolar point but on the geomagnetic equator

rweitin synthesis imaging workshop

TROPOSPHERE


- At high frequencies, the troposphere is the main problem for calibration
- The tropospheric delay is dominated by the dry atmosphere
 - But that is fairly stable
- Water vapor is highly variable, so limits phase stability
 - For a high frequency array, chose a site with low water vapor
 - Want an arid location at high altitude
 - EVLA at 2114 m
 - ALMA at 5000 m in the Atacama Desert
 - Want phase stability
 - Usually, but not always correlates with opacity

RADIO FREQUENCY INTERFERENCE

- RFI is a big problem especially on short baselines at low frequencies.
 - Non-closing corruption of data
 - Time variable
 - Corruption of spectra
- It is becoming more of a problem at high frequencies
- Want isolation from civilization
- Want terrain shielding (surrounding mountains good)
 - Can't hide from satellites
- Problem is reduced for long baselines
 - Sources different at each antenna done correlate
 - Attenuated by high fringe rates (differential Doppler shifts)
 - But can saturate receivers

Twelfth Synthesis Imaging Workshop

SITE CONSTRAINTS

- Sites for all antennas need to be chosen together for good UV coverage
- Site issues vary on different scales
 - For short baselines (10s of km), want large flat area
 - Full freedom to position antennas as desired
 - For 10s to 100s of km, will need individual sites
 - Need to conform to power, communication, road access
 - Need to avoid cities, wilderness areas, military areas
 - The sites will need to be within a few km of the desired position for the configuration, but many configurations work
 - For long baselines, site position not critical to 10s or 100s of km
 - Usually can find some place that works
 - Main constraints are major geographic features like oceans

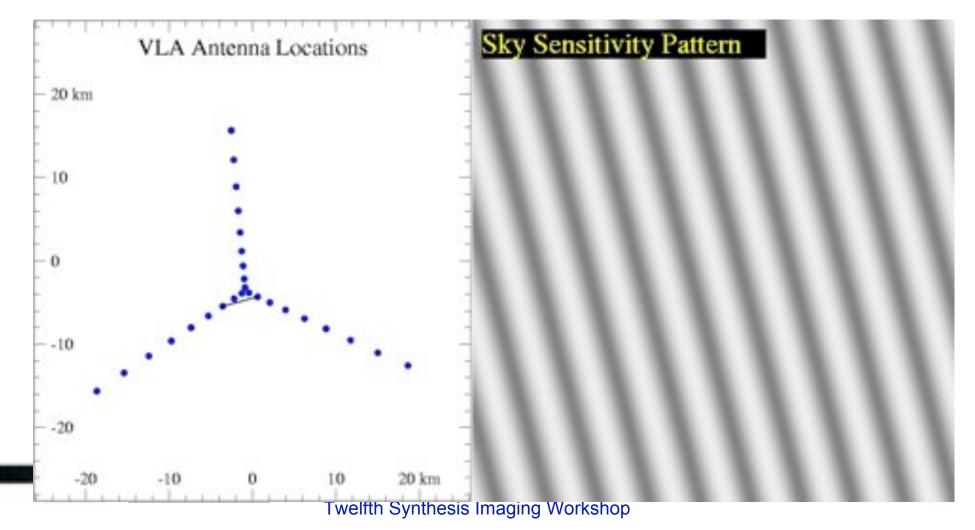
NUMBER OF ANTENNAS AND SITES

- Sensitivity issues
 - Required sensitivity
 - Required field of view or survey speed
 - Cost optimization N vs D
- Imaging issues
 - Required baseline range and UV coverage
 - Types and complexity of target sources
 - Impact of confusion
- Each antenna separate or clusters?
 - May depend on distance from center
 - May be cost and correlator size driven

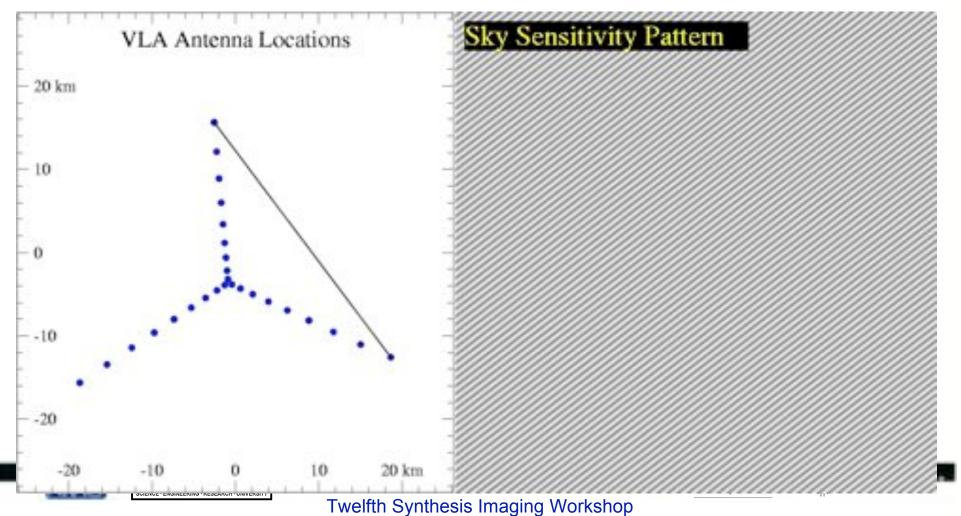
RECONFIGURE?

- Allows wide baseline range with fewer antennas
 - EVLA 1km to 35km arrays 27 antennas but 72 pads
- Constrains observing to certain times by resolution
- Requires some sort of transporter
- SKA not planned to reconfigure
- "Configurations" (EVLA) vs continuous zoom (ALMA)

ALMA transporter

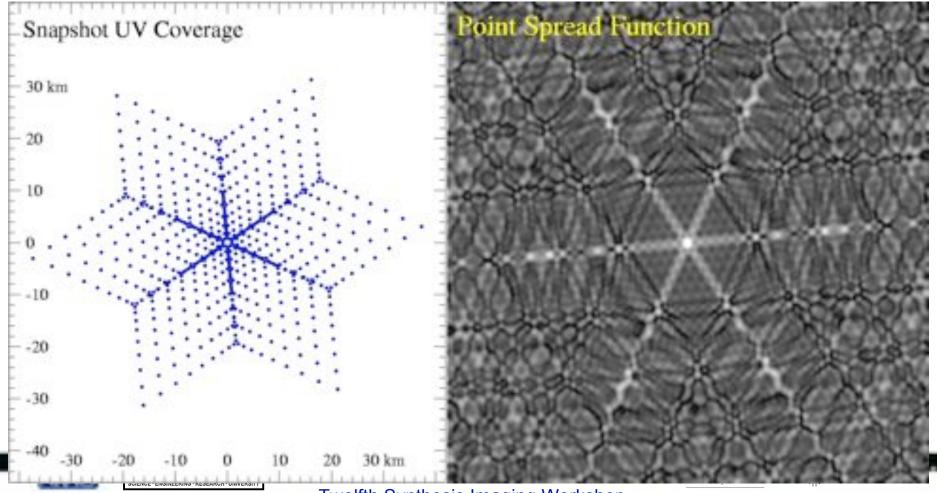

CONFIGURATION

- Must determine where to put the antennas
- Goals
 - Obtain adequate UV coverage to meet the scientific goals
 - Minimize cost probably means minimize separate stations
- Constraints
 - Available geography
 - Available infrastructure (power, communication, roads)
- What are the required properties and capabilities?
 - Snapshot coverage or only full tracks
 - Brightness sensitivity and resolution range
 - Implies baseline range
 - Centrally condensed or more uniform distribution
 - Reconfigurable?
- Once configuration is chosen, can't freely move individual antennas
 - Optimizing baselines


UV COVERAGE: SINGLE SHORT BASELINE

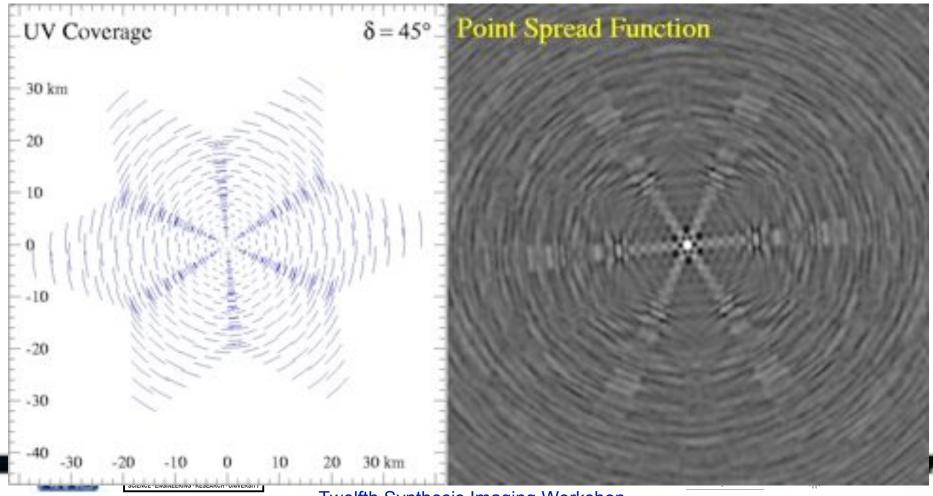
A single baseline has a sinusoidal sensitivity pattern across the sky, oscillating between constructive and destructive interference.

UV COVERAGE: SINGLE LONG BASELINE


The oscillations in the sensitivity pattern have the same direction as the baseline, with a period determined by the baseline length in wavelengths

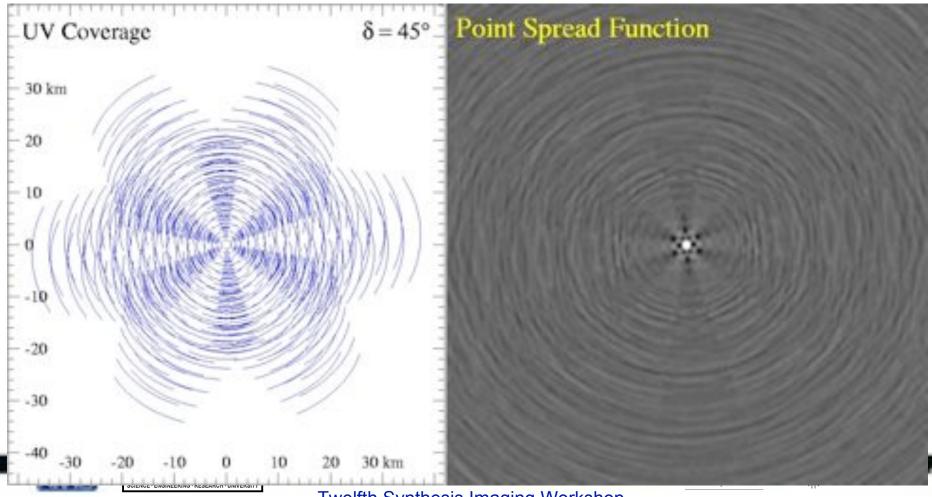
UV COVERAGE: SNAPSHOT

The uv-coverage is the set of all baseline vectors.


The synthesized beam (PSF) is the sensitivity pattern of all baselines.

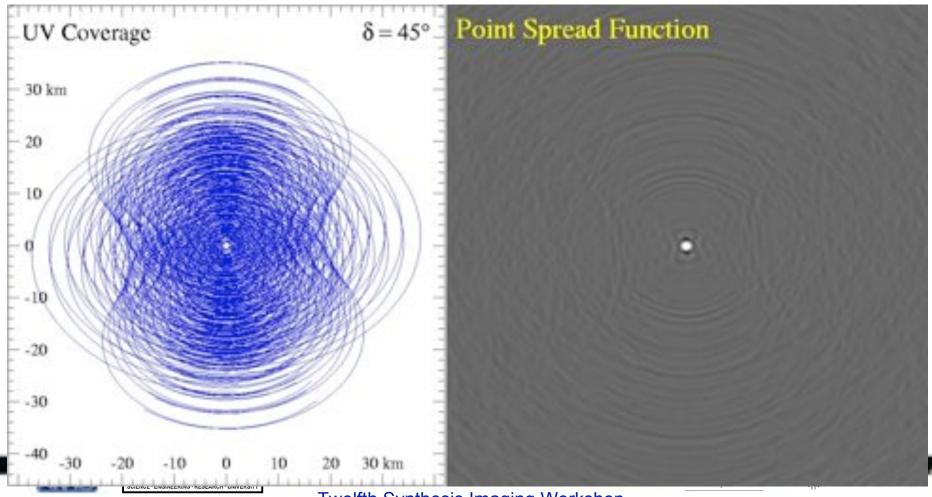
Twelfth Synthesis Imaging Workshop

UV COVERAGE: SHORT TRACK


1 Hour Synthesis Observation

Twelfth Synthesis Imaging Workshop

UV COVERAGE: MEDIUM TRACK


3 Hour Synthesis Observation

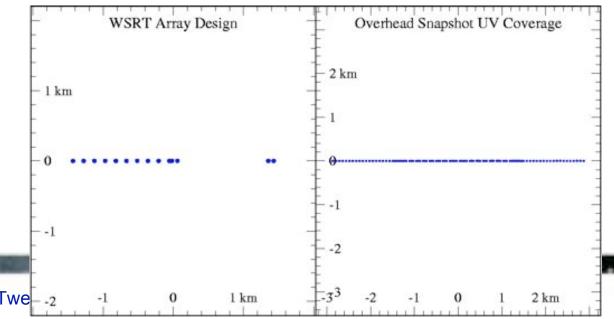
Twelfth Synthesis Imaging Workshop

UV COVERAGE: FULL TRACK

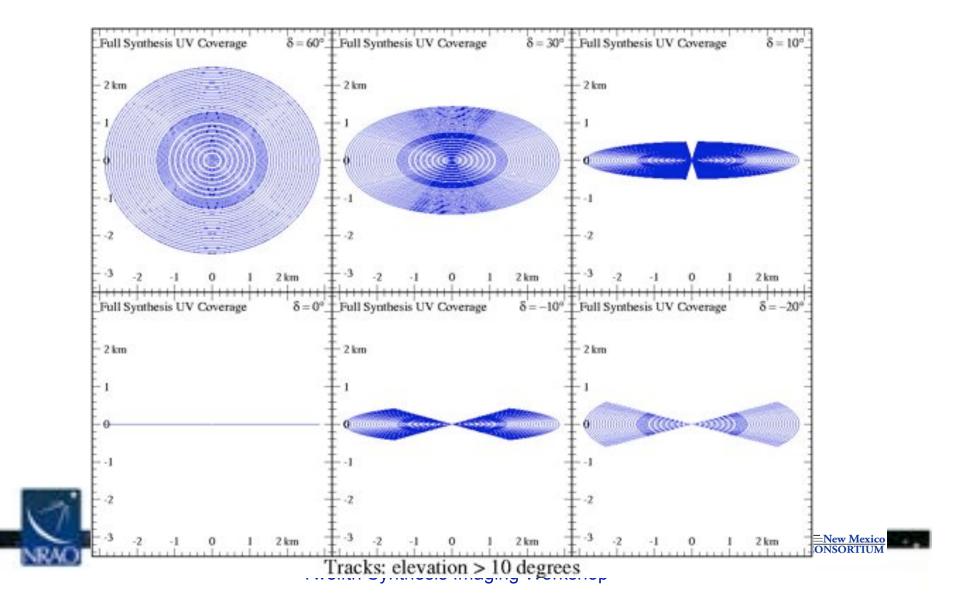
12 Hour Synthesis Observation

Twelfth Synthesis Imaging Workshop

EXAMPLES: Westerbork Synthesis Radio Telescope (WSRT)

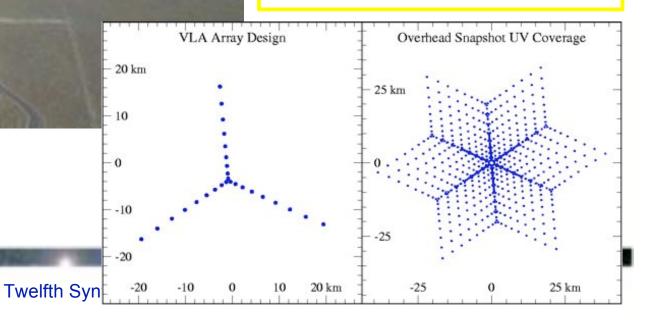


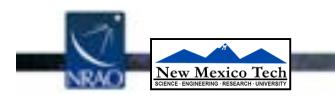
Has 14 antennas, 25m diameter


East-West Array

Requires Earth Rotation Synthesis for all imaging

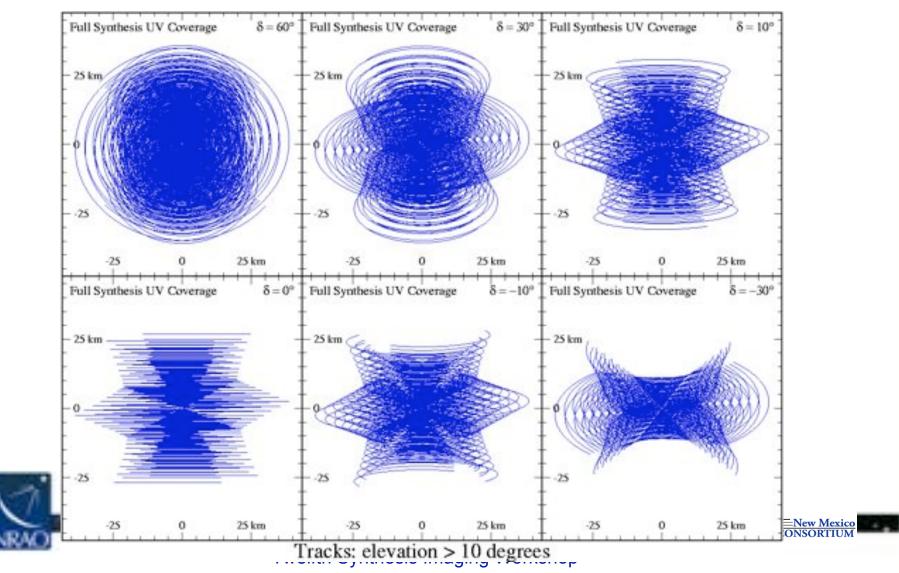
Dedicated in 1970: one of the earliest major interferometric arrays


EXAMPLES: WSRT



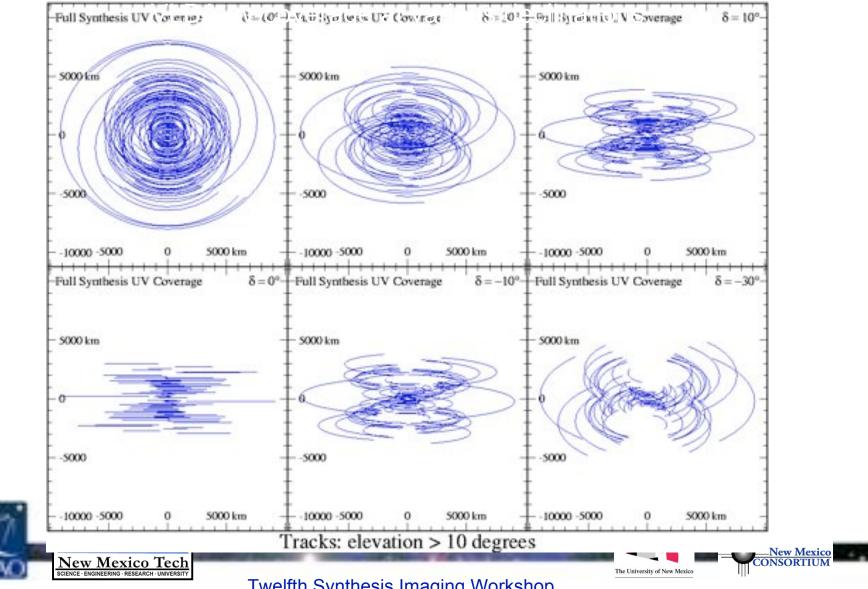
EXAMPLES: Very Large Array (VLA)

Y-shaped Array Re-configurable


Config	j. B _{max} (k	(km) B _{min} (km)
Α	36	0.68
B	11	0.24
С	3.4	0.045
D	1.0	0.035

EXAMPLES: VLA LONG TRACK

VLA uv-coverage at various declinations


EXAMPLES: Very Long Baseline Array (VLBA)

Ten 25m antennas US Territory, Hawaii to St. Croix Baselines 200 to 8,600 km Elements not connected Separate clocks Data recorded Resolution of milliarcseconds

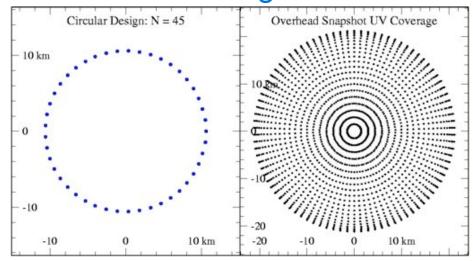
EXAMPLES: VLBA

Twelfth Synthesis Imaging Workshop

VARIOUS "IDEAL" ARRAY DESIGNS

- Circular •
 - maximizes number of long baselines
- Spiral
 - has more short baselines
- Random

-10


 has little redundancy or patterns

10 km

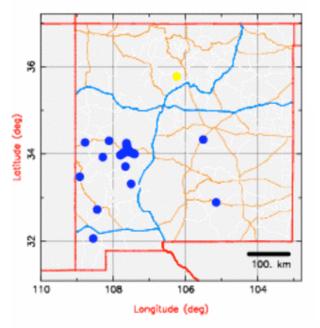
-20

-10

Circular Design: N = 45

10 km

-10


10 km

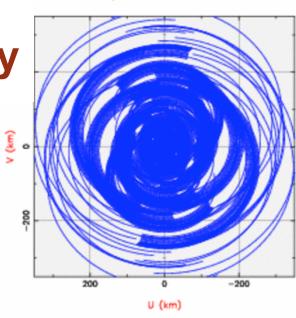
Spiral Design: N = 45 Random Design: N = 45Random Design: N = 45 Spiral Design: N = 45 Overhead Snapshot UV Coverage Overhead Snapshot UV Coverage 10 km 10 km 5 km 0 -5 -5 -10-10 - -20

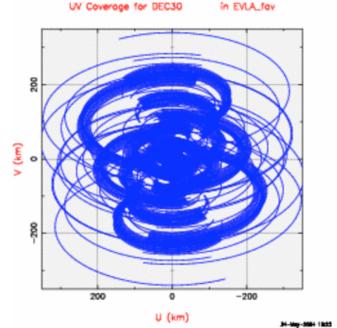
-10

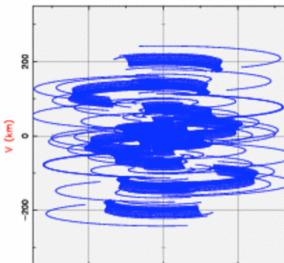
10 km

Station locations for EVLA_fav

Centrally Condensed Array

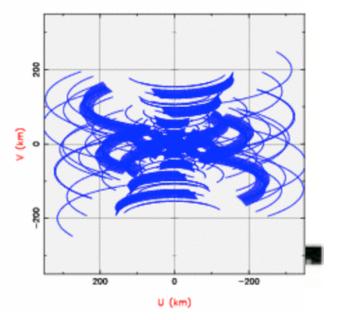

- Plots for EVLA2 (NMA)
 VLA + 10, to 300km
- Mainly baselines from outer stations to core count
- SKA will be centrally condensed


UV Coverage for DEC06


• Hard to get full resolution and full sensitivity together

in EVLA_fov

-200

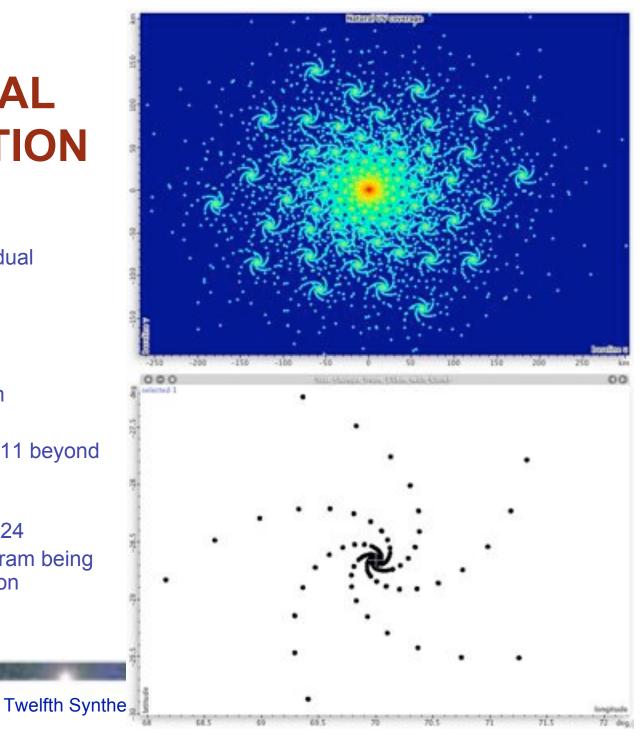

0

U (km)

200

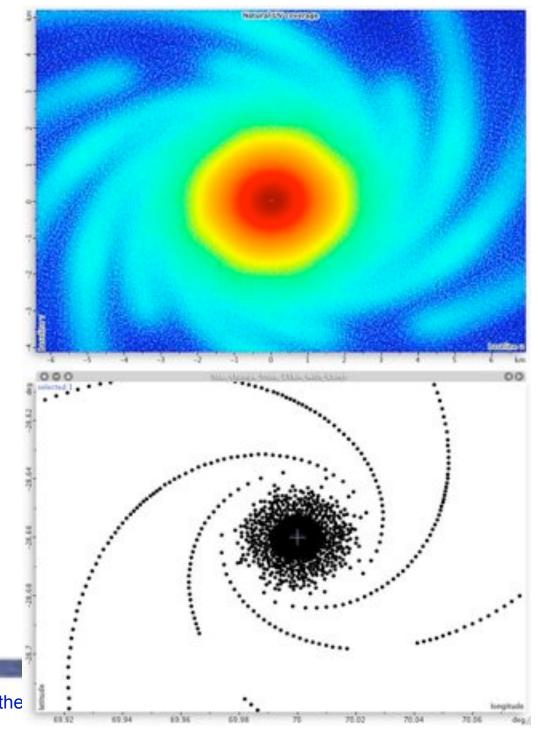
in EVLA_fov

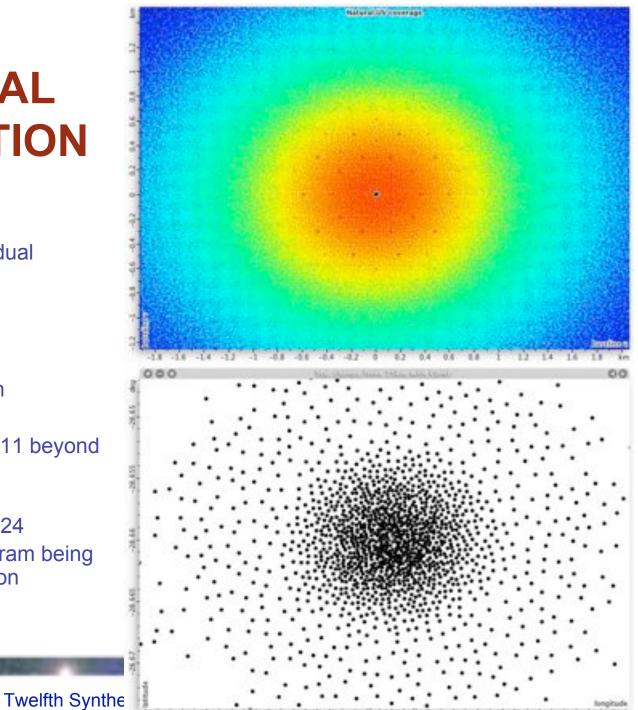
UV Coverage for DEC64 in EVLA_fav

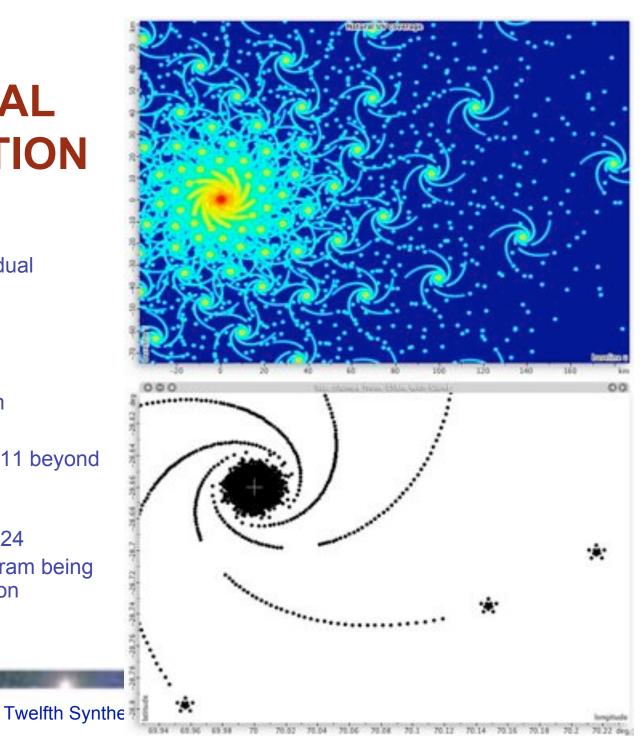

LARGE-N / SMALL-D CONCEPT

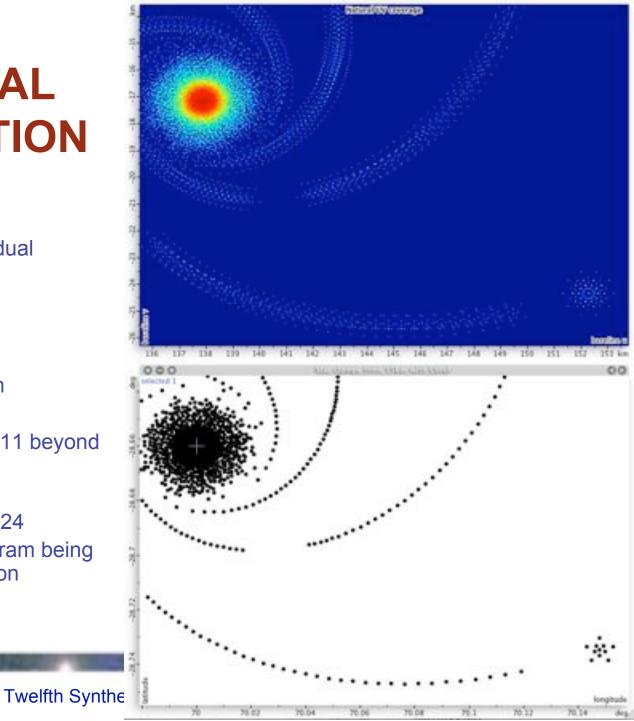
- N = Number of antennas in array
- D = Diameter of an antenna
- Collecting area (N D²) kept constant
- UV Coverage drastically improved keeping sensitivity constant
 - Number of baselines scales with N²
- Field of view large better for survey speed
- Antennas relatively inexpensive cost effective way to get area
- But the electronics are more complicated and expensive
 - Many more receivers, LOs, data lines etc
 - Correlator scales with N²
- ATA is exploring the concept
- SKA will likely use it with several thousand antennas




- About 3000 antennas
- Core of 5 km diameter
 - Dense array of 1500 individual antennas
- Skirt 2.5 to 15 km radius
 - Transition to spirals
 - 372 antennas
- Intermediate region 2.5-180 km
 - Skirt is inner part
 - 528 antennas in clumps of 11 beyond skirt
- Remote region 180-3000+ km
 - 600 antennas in clumps of 24
- Displays from AntConfig program being used to derive SKA configuration


- About 3000 antennas
- Core of 5 km diameter
 - Dense array of 1500 individual antennas
- Skirt 2.5 to 15 km radius
 - Transition to spirals
 - 372 antennas
- Intermediate region 2.5-180 km
 - Skirt is inner part
 - 528 antennas in clumps of 11 beyond skirt
- Remote region 180-3000+ km
 - 600 antennas in clumps of 24
- Displays from AntConfig program being used to derive SKA configuration


- About 3000 antennas
- Core of 5 km diameter
 - Dense array of 1500 individual antennas
- Skirt 2.5 to 15 km radius
 - Transition to spirals
 - 372 antennas
- Intermediate region 2.5-180 km
 - Skirt is inner part
 - 528 antennas in clumps of 11 beyond skirt
- Remote region 180-3000+ km
 - 600 antennas in clumps of 24
- Displays from AntConfig program being used to derive SKA configuration

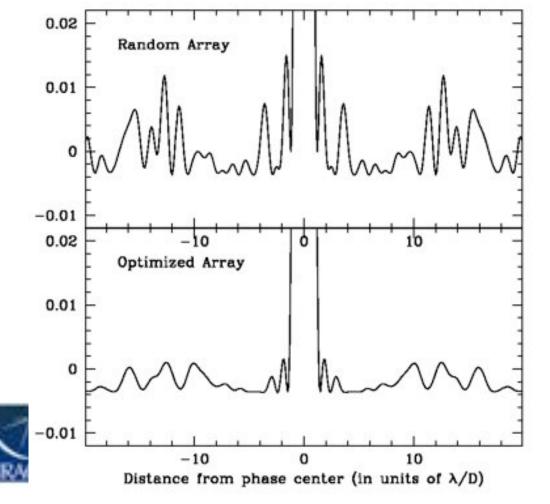

- About 3000 antennas
- Core of 5 km diameter
 - Dense array of 1500 individual antennas
- Skirt 2.5 to 15 km radius
 - Transition to spirals
 - 372 antennas
- Intermediate region 2.5-180 km
 - Skirt is inner part
 - 528 antennas in clumps of 11 beyond skirt
- Remote region 180-3000+ km
 - 600 antennas in clumps of 24
- Displays from AntConfig program being used to derive SKA configuration

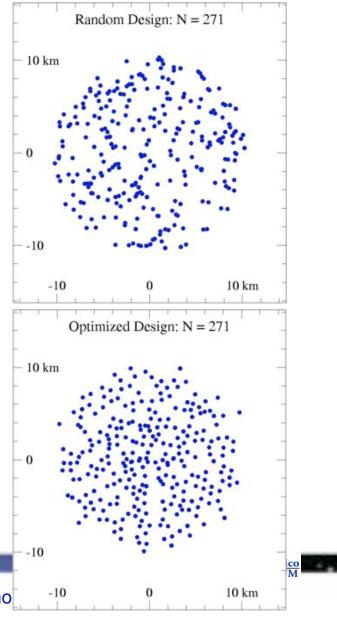
- About 3000 antennas
- Core of 5 km diameter
 - Dense array of 1500 individual antennas
- Skirt 2.5 to 15 km radius
 - Transition to spirals
 - 372 antennas
- Intermediate region 2.5-180 km
 - Skirt is inner part
 - 528 antennas in clumps of 11 beyond skirt
- Remote region 180-3000+ km
 - 600 antennas in clumps of 24
- Displays from AntConfig program being used to derive SKA configuration

New Mexico Tech

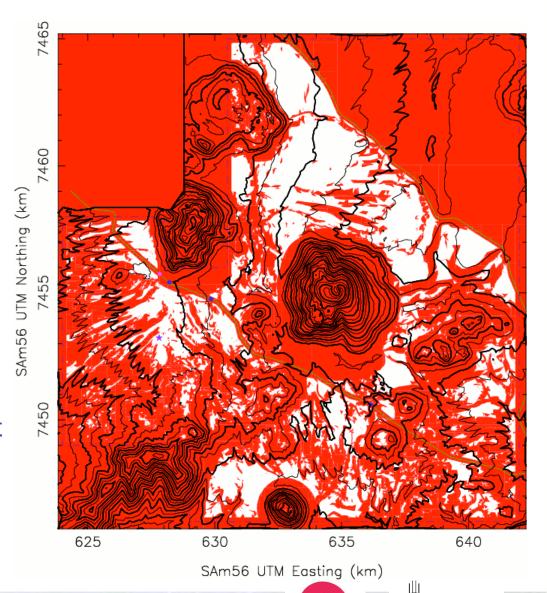
ARRAY OPTIMIZATION

- Trial and Error
 - devise configurations and calculate metrics (works OK for small N)
- Random Distribution
 - Lack of geometric pattern reduces redundancy
 - Works surprisingly well for large N
- Simulated Annealing (Cornwell)
 - Define uv 'energy' function to minimize log of mean uv distance
- UV-Density & pressure (Boone)
 - Steepest descent gradient search to minimize uv density differences with ideal uv density (e.g., Gaussian)
- Genetic algorithm (e.g., Cohanim et al., 2004)
 - Pick start configurations, breed new generation using crossover and mutation, select, repeat
- PSF optimization (L. Kogan)
 - Minimize biggest sidelobe using derivatives of beam with respect to antenna locations (iterative process)


METRICS FOR OPTIMIZATION


- Side-lobe levels
 - Useful for image dynamic range
- Range of baseline lengths
 - Useful for large complex sources
 - Useful for ability to support a wide variety of science
- Largest gaps in uv-coverage
 - Image fidelity
- Match to desired baseline length distribution
 - So that UV-weighting, which reduces sensitivity, is not needed

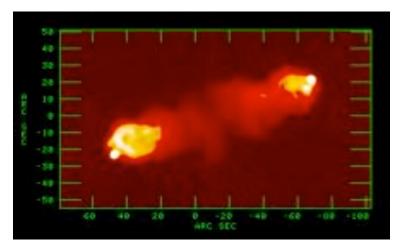
Iterative Minimization of Sidelobes: Kogan Method

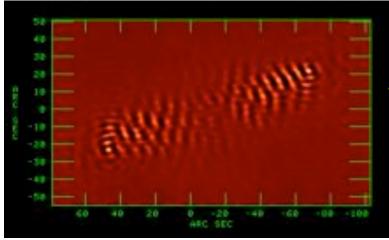

Comparing random versus optimized arrays for N = 271

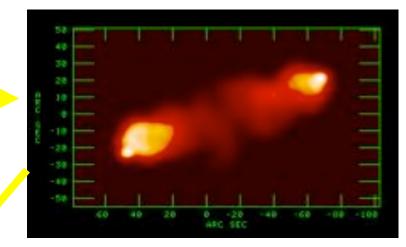
MASK

- In the optimization, a mask can be used to define acceptable places to put antennas
- Example is for ALMA
 - Pads can go in the white areas
- Preparation of a mask is an important step
 - Time consuming to get all the required data

New Mexico


Twelfth Synthesis Imaging Workshop


SIMULATIONS


- Simulations provide a good test and demonstration of an array design
 - Show how well the UV-coverage performs in practice
 - Can explore "fidelity" since the "true" image is known
 - Provide material to help sell the array
- Steps for a simulation:
 - Generate realistic models of sky
 - Simulate data, adding in increasing levels of reality
 - Atmosphere, pointing errors, dish surface rms etc.
 - Process simulated data & compare final images for different designs and configurations – relative comparison
 - Compare final images with input model
 - Tests image fidelity which cannot be done with real data
 - Compare with specifications for DR and fidelity
- Be careful that you are not just testing imaging methods rather than array design imaging is a complicated process

Simulating the Long Wavelength Array (LWA)

- Simulating Image Fidelity
 - Project model image to simulated uv-coverage and image in normal way
 - Subtract model to examine residual image errors
 - Can define: Fidelity Index = (peak intensity)/(residual rms))

The University of New Mexico

ENew Mexico

Twelfth Synthesis Imaging Workshop

SIMULATION SOFTWARE

- Most analysis packages have basic simulation capabilities
- AIPS Basic fake data creation with full imaging and analysis
- CASA simdata and sm
 - Can simulate many arrays. including ALMA, EVLA, CARMA, SMA, ATCA, PdB
- MeqTrees Implements measurement equations
 - Used especially for LOFAR
- ASKAPSoft includes support for multi-beam systems
- IRAM/GILDAS ALMA simulator
- Many more

