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What is a correlator?

* In an optical telescope...
— alens or a mirror collects the light & brings it to a focus

— a spectrograph separates the different frequencies

eeeeeeeeeeeeeeeeee
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* In an interferometer, the correlator performs both these tasks,
by correlating the signals from each telescope (antenna) pair: °
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*The basic observables are the complex visibilities:
amplitude & phase
as functions of
baseline, time, and frequency.

*The correlator takes in the signals from the individual
telescopes, and writes out these visibilities.
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Correlator Basics

IS

A simple (real) correlator.
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Antenna 2:
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Correlation of a Single Frequency 1

For a monochromatic signal:

sin 2wyt

sin (2wt + @)

(sin27upt) sin 27y (t+ 7) + @)

TR Cos 2Ty (T — Tp) + xrsin 2wy (7 — 7o)

with

® r; = x;i(10+ A7), with A7 =1/ (41p) (A¢p = 90°).

® Iy = iﬂij(ﬂ])
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At a given frequency, all we can know about the signal is
contained in two numbers: the real and the imaginary part,
or the amplitude and the phase.

A complex correlator.
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Broad-band Continuum Correlators 17

1. The simple approach:
* use a filterbank to split the signal up into quasi-
monochromatic signals at frequencies

* hook each of these up to a different complex correlator,
with the appropriate (different) delay: m

* add up all the outputs

1. The clever approach:

instead of sticking in a delay, put in a filter that shifts the
phase for all frequencies by nt/2

Twelfth Synthesis Imaging Workshop, June 8-15, 2010
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Filter Bank

Filter Bank

Rij(Tol = Z ka+-i2Ik

Figure 4—4. A wide-band complex correlator synthesized from narrow-band complex corre-
lators, or a spectroscopic correlator. Each box labeled “CC” is as indicated in Figure 4-3.

Twelfth th 5
New MeXICO Tech welfth Synthesis Imaging Workshop, June 8-15, 2010

SCIENCE - ENGINEERING - RESEARCH - UNIVERSITY The University of New Mexico




Spectral Line Correlators 19

1. The simple approach:
* use a filterbank to split the signal up into quasi-
monochromatic signals at frequencies

* hook each of these up to a different complex correlator,
with the appropriate (different) delay: m

* record all the outputs: IRECZ%%

£
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= . . . 20
Fourier Transforms: a motivational exercise

(small delays)
high frequencies
2 (large delays)
low frequencies
=
= Measuring a range of
lags corresponds to
measuring a range of
frequencies

The frequency spectrum is the Fourier transform of
the cross-correlation (lag) function.
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Spectral Line Correlators (cont’d) 21

2.Clever approach #1: the FX correlator

F: replace the filterbank with a Fourier transform

X: use the simple (complex) correlator above to measure the cross-
correlation at each frequency

average over time

record the results

Examples: NRO, VLBA, DiFX, ACA

3. Clever approach #2: the XF (lag) correlator
* X: measure the correlation function at a bunch of different lags
(delays)
* average over time
F: Fourier transform the resulting time (lag) series to obtain spectra
record the results
Examples: VLA, IRAM; preferred for >20 antennas
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FX vs. XF 22

F
A~ SI(V)
=—> §m

Fourier transform V

X multiply multiply X

Fourier transform v
=—> .

T» —

=
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FFT Processor

Input: N real points 23

Output: N/2 complex points

One multiply/accumulate

at N/2 spectral points

EVERY N sample clocks.

Output: N/2 complex points
Input N  real points
FFT Processor

One multiply/accumulate
at N lags
EACH sample clock.

V,O—%4SZ
i ‘&

FFT Processor

Fig. 4-1: Lag (XF) correlator baseline processing.
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Spectral Line Correlators (cont’d) 2

. Clever approach #3: the FXF (hybrid) correlator
* F: bring back the filter bank! (but digital: polyphase FIR filters,
implemented in field programmable gate arrays)
- splits a big problem into lots of small problems (sub-bands)
- digital filters allow recovery of full bandwidth (“baseband”) through
Sub-band stitching
* X: measure the correlation function at a bunch of different lags
(delays)
* average over time
* F: Fourier transform the resulting time (lag) series to obtain spectra
* stich together sub-bands
* record the results
* Examples: EVLA/eMERLIN (WIDAR), ALMA (TFB+ALMA-B);
preferred for large bandwidths
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FXF Output
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Implementation & choice of architecture *

* Correlators are
— Size roughly goes as N,BW N, =N_?BWN,_
— N_, driven up by...
* sensitivity (collecting area)
* cost (small is cheap)
* imaging (more visibilities)
* field-of-view (smaller dishes ==> larger potential FoV)
— BW driven up by...
* continuum sensitivity
— N, driven up by...
* spectral lines (spectral resolution, searches, surveys)

* Radio frequency interference (RFI) from large BW
* field-of-view (fringe washing = beam smearing = chromatic aberration)
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Implementation & choice of architecture Y

* Example: EVLA's WIDAR correlator (Brent Carlson & Peter
Dewdney, DRAQO)

2 x4 x 2= 16 GHz, 32 antennas

128 sub-band pairs

Spectral resolution down to below a Hz

Up to 4 million spectral channels per baseline

Input: 3.8 Thit/sec ~ 160 DVDs/sec (120 million people in
continuous phone conversation)

40e15 operations per second (petafiops)
Output (max): 30 Gbytes/sec ~ 7.5 DVDs/sec

* N.B. SKA: ~100x larger: 4000 petaflops! (xXNTD approach)

New Mexico Tech
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2 of 256
Boards...

; 1 0of 16
P plus LOTS of cables!
Us  _aMracks...

1M“.ico. Consol}ii'i
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ALMA

1 of 4 quadrants

1M=xicol.lConsolE:nil'i
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Implementation & choice of architecture >

* Huge & expensive ==> relies on cutting-edge technology, with
trade-offs which change frequently (cf. Romney 1999)

Silicon vs. copper
Capability vs. power usage

* Example: fundamental hardware: speed & power usage vs.
flexibility and “non-recoverable engineering” expense (NRE)

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY

Application Specific Integrated Circuit (ASIC) (e.g., GBT, VLA,
EVLA, ALMA)

Field Programmable Gate Array (FPGA) (e.g., VLBA, EVLA, ALMA)
Graphics cards

ROACH boards (Casper: “lego” correlator)

Software (PCs; supercomputers) (e.g., DiFX, LOFAR)

Twelfth Synthesis Imaging Workshop, June 8-15, 2010




Implementation & choice of architecture 7

* Huge & expensive ==> relies on cutting-edge technology, with
trade-offs which change frequently (cf. Romney 1999)

— Silicon vs. copper
— Capability vs. power usage

* Example: fundamental hardware: speed & power usage vs.
flexibility and “non-recoverable engineering” expense (NRE)

— Application Specific Integrated Circuit (ASIC) (e.g., GBT, VLA,
EVLA, ALMA)

— Field Programmable Gate Array (FPGA) (e.g., VLBA, EVLA, ALMA)
— Graphics cards
— Software (PCs; supercomputers) (e.g., DiFX, LOFAR)

* So big and so painful they tend to be used forever (exceptions:
small arrays, VLA, maybe ALMA)

* Trade-offs are so specific they are never re-used (exception:
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Details, Details 32

* Why digital?
— precise & repeatable
— “embarassingly parallel” operations
— piggy-back on industry (Moore’s law et al.)

* ...but there are some complications as well...
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Digitization %3

1. Sampling: v(t) = v(t), with t=(0,1,2,...)dt

— For signal v(f) limited to O<v=<Av, this is lossless if
done at the Nyquist rate:

At <1/(2Av)
— n.b. wider bandwidth = finer time samples!
— limits accuracy of delays/lags
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Example: subsample delay errors

Plot file version 10 created 07-JUN-2010 17:05:57
Delay vs UTC time for CO1.350.60.UVDATA.1
SN 2 Rpol IF1

T T T T T
1R W@9

0.3
0.2
0.1
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-0.1
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TIME (HOURS)
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Example: subsample delay errors

Plot file version 14 created 08-JUN-2010 09:08:10

C01.350.60.UVDATA.1
Freq = 5.0240 GHz, Bw = 128.000 MH Calibrated with CL # 2 but no appliec
T T T T st

Plot file version 10 created 07-JUN-2010 17:05:57
Delay vs UTC time for CO1.350.60.UVDATA.1
SN 2 Rpol IF1

T T T T T
1R W@9
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Example: subsample delay errors

Plot file version 14 created 08-JUN-2010 09:08:10
CO| .350.60.UVDATA.1
=5 0240 GHz, Bw = 128 000 MH ( with CL # 2 but no
T T T

Plot file version 10 created 07-JUN-2010 17:05:57
Delay vs UTC time for CO1.350.60.UVDATA.1
SN 2 Rpol IF1

T T T T T
1R W@9

llF ) | | | |
&00 4980 5000 5060 5080
Lower frame: Milli Ampl Jy Top frame: Pha:

deg
Scalar averaged cross-power spectrum Blnllnc NO9 (18) - NO8 (28)
Timerange: 00/14:4%:30 to 00/14:48:00

0.3
0.2
0.1
0.0
0.1
0.2
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Example: subsample delay errors

Plot file version 14 created 08-JUN-2010 09:08:10

CO‘ .350.60.UVDATA.1
=5, 0240 GHz, Bw = 128 000 MH C with CL # 2 but no
T T T

Plot file version 10 created 07-JUN-2010 17:05:57
Delay vs UTC time for CO1.350.60.UVDATA.1
SN 2 Rpol IF1

T T T T T
1R W@9
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Digitization %8

1. Sampling: v(f) = v(t,), with t,=(0,1,2,...)dt

— For signal v(t) limited to O<v<Av, this is lossless if done
at the Nyquist rate:

At <1/(2Av)
— n.b. wider bandwidth = finer time samples!
— limits accuracy of delays/lags
1. Quantization: v(f) = v(f) + &
— quantization noise

— quantized signal is not band-limited = oversampling
helps

* N.B. FXF correlators quantize twice, ruling out
most analytic work...
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Quantization & Quantization Losses

LARRY R. D’ADDARIO

b v
3- Q

2

T T T

T
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—_——
s

-3

Figure 4-6. An example of a quantizer transfer function (solid lines); this quantizer has seven
levels. The dashed line is the line defined by v, = v, and the difference between it and the
transfer function is the quantization noise, .

PN
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Table 4—1.

Signal-to-Noise Ratio vs. Quantization and Sampling Rate

]

Quantization

H S/N (digital
Sampling Rate Wﬁmﬁ

*VLA Case.

oo-level
(continuous)

All cases assume rectangular bandpasses of width Av, signal levels
adjusted to maximize the signal-to-noise ratio, and small correla-

tion coeflicients.
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Cross-Correlating a Digital Signal 40

* We measure the cross-correlation of the digitized
(rather than the original) signals.

* digitized CC is monotonic function of original CC

* 1-bit (2-level) quantization:

.

TPi;i(T)

iﬂij(’?‘) — 00 Ssin

—is average signal power level — NOT kept for 2-level
quantization!

—roughly linear for correlation coefficient
* For high correlation coefficients, requires non-linear
correction: the Van Vleck correction
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Van Vleck Correction 1

LARRY R. D’ADDARIO

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Digital correlation coefficient

Figure 4—7. Quantization correction functions for various quantizations. In each case the
signal powers are set for maximum signal-to-noise ratio. The curves are labeled according to
the number of quantization levels; 4a uses a simplified multiplier (see Cooper, 1970).
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Correlation Coefficient & Tsys *

* Correlation coefficients are unitless
— 1.0 ==> signals are identical

* More noise means lower corr’'n coeff, even if signal is
identical at two antennas

* Must scale corr’n coeff by noise level (Tsys) as first
step in calibration
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Michael’s Miniature Correlator

B LS

integrated &
Signals come in... sampled... quantized.. delayed... multiplied... | pormalized
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FXF Output: sub-band alignment & aliasing

i Born b,

Slot 1

DU g

Slot 10

A I

Slot 14

16 sub-bands

iMExil:w C ;_1
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FXF Output: sub-band alignment & aliasing
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How to Obtain Finer Frequency Resolution 40

*The size of a correlator (number of chips, speed, etc.) is generally set
by the number of baseline N[fnt) and the maximum total
bandwidth. [note also copper/connectivity costs...]

* Subarrays
... trade antennas for channels

* Bandwidth
-- cut Av:
= same number of lags/spectral points across a
smaller Av: N, = constant

= narrower channels: vocAv
...limited by filters
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. . 47
-- recirculation:

* chips are generally running flat-out for max. Av (e.g.
EVLA/WIDAR uses a 256 MHz clock with Av = 128
MHz/sub-band)

* For smaller Av, chips are sitting idle most of the time: e.g.,
pass 32 MHz to a chip capable of doing 128 M muiltiplies
per second

= add some memory, and send two copies of the data with
different delays

=N, oc 1/Av

= Qv oc (Av)?
...limited by memory & data output rates
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VLA Correlator: .
Bandwidths and Numbers of Channels

Table 14: Available bandwidths and mumber of spectral line channels in normal mode

12500
3125

45828
12.207
G.104

3062
1.526

MNuotes:

(1) Observing Modes 1A, 1B, 1C, 1D.
(2) Observing Modes 2AB, 2AC, 2AD, 2BC, ZBD, 20D,

(3) Observing Modes 4, PA, PB. It is possible to use the output from one, two or four IFs in such & wiay s to obtain
different combinations of number of spectral line channels and channel separation. The minimum and maximum

number of channels is 4 and 512 respectively
(4) Thess are the numbers of spectral line channels produced in the array procesor. Any number of spectral line

channels that is a power of 2, that is less than or equal to the number in the table and that is greater than or equal
to 2 may be selected using the data selection options awailable within the OBSERVE and JObeerve programs.
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VLBI

* difficult to send the data to a central location in real time

* long baselines, unsynchronized clocks = relative phases
and delays are poorly known

* S0, record the data and correlate later
* Advantages of 2-level recording

: Twelfth Synthesis Imaging Workshop, June 8-15, 2010
New Mexico Tech y ging P
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Correlator Efficiency n, 50

* quantization noise

* overhead
— don’t correlate all possible lags
— blanking

* errors
— Incorrect quantization levels
— Incorrect delays

: Twelfth Synthesis Imaging Workshop, June 8-15, 2010 m
New Mexico Tech y ging P
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Choice of Architecture 4

» number of multiplies: FX wins as {N,, N, 1

multiplies per second ~ N, ’Av N, N,

* number of logic gates: XF multiplies are much
easier than FX; which wins, depends on current
technology

* shuffling the data about: “copper” favors XF over
FX for big correlators

* bright ideas help: hybrid correlators, nifty
correlator chips, etc.

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



New Mexico Correlators
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EVLA
VLA (WIDAR) VLBA
Architecture XF FXF FX
Quantization 3-level 16/256-level 2- or 4-level
N_, 27 40 20
Max. Av 0.2 GHz 16 GHz 0.256 GHz
N, 1-512 16,384 - 262,144 256 - 2048
Min. dv 381 Hz 0.12 Hz 61.0 Hz
dt . 1.7s 0.01s 0.13s
Power req’t. 50 kW 135 kW 10-15 kW

Data rate

3.3 x 108 vis/sec

2.6 x 107 vis/sec

3.3 x 10°% vis/sec

New Mexico Tech

SCIENCE - ENGINEERING - RESEARCH - UNIVERSITY

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Consaort um’s
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Spectral tuning, shaping, & response

eeeeeeeeeeeeeeeeee
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The spectrum: “receiver” response

/ \ Receiver response (analog)

...fixed in frequency
Examples:
EVLA Ka band: 26.5- 40 GHz

ALMABand 4: 125 -163 GHz
VLBA 4cm: 8 - 88GHz

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



Basebands: final analog filtering

55

A

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY

\ ...split into basebands

(final analog filtering)
Examples:

EVLA 2x1GHzor4 x2 GHz

ALMA 4 x 2 GHz

VLBA 16 x 0.0625-16 MHz

VLBA upgrade 2 x 512 MHz

Twelfth Synthesis Imaging Workshop, June 8-15, 2010




Basebands: tuning >

f ~) '~ \ Sets of basebands are

iIndependently tunable
(multiple LO chains)

Examples:
EVLA 2 LO chains (AC, BD)
ALMA similar

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



Basebands: tuning
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-
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Basebands: tuning

58

-
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Basebands: digitizing

m m Each baseband is digitized

by a sampler
OXO2020; OI020X6;

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY
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Basebands: variable gain

/ \ Since we want to use all
available bits in the
samplers, we insert a
variable gain (attenuation)
to keep the input power
constant...

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY
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Basebands: variable gain

/ \ ...we track the resulting

variable gain by adding a
known amount of noise
before the samplers:
noise tube (Tcal)

This is the switched power

measurement.

N.B. millimeter telescopes don’t
do this — instead they track the
total power (system
temperature) and use a hot

load as reference. See Crystal
Brogan’s talk.

. Twelfth Synthesis Imaging Workshop, June 8-15, 2010
New Mexico Tech y ging P
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Zooming in on a baseband: subbands >

/ \ Even single basebands (1-
/ oy 2 GHz) are too wide for
easy processing...

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



Zooming in on a baseband: subbands >

/ \ ...s0 in hybrid correlators
/ (EVLA, ALMA) we use

PO digital (polyphase/FIR)

filters to subdivide into

subbands

Examples:
EVLA 16 subbands/baseband
ALMA 32 subbands/baseband
(TFB=Tunable Filter Bank)

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



Zooming in on a subband: basebands

64

/ \ More complex filters (more
/ taps) give better filter
rwm nm ﬂﬂw shapes, and/or narrower
filters
Note that each filter is

Independent

Examples:
EVLA 31.25 kHz-128 MHz
ALMA 31.25 MHz or 62.5 MHz

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY




Subbands: tuning restrictions
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/ 7 B A \ Polyphase filters divide the
e baseband evenly into

W subbands; you can put

the subbands only into
certain slots in the

baseband.
Examples:
EVLA @ 128 MHz BW:
0-128, 128-256, 256-384,
384-512, 512-640, 640-768,
768-896, 896-1024 MHz

/
/
/

D

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
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Subbands: tuning restrictions >

/ T \ ...80 We add digital mixers
to fine-tune the subbands

DPMITINITT - Sxamele
P O O EVLA after 128 MHz filtering

Hz-ish resolution
—> cannot cross 128 MHz
boundaries

ALMA before all digital filtering,
32.5 kHz resolution
—> ~no tuning restrictions —
can overlap subbands even
at full bandwidth

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



Subbands: fine-tuning
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Subbands: fine-tuning
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Zooming in on subbands: sideband rejection >

—

/ \ Even digital filters aren’t
perfect: they do not

m mm(ﬂm completely reject out-of-
f’///, : \\i\‘*f

band signals, especially
at the edges.

This adds noise (which
can’'t be avoided: sqrt(2)
iIn SNR) and unwanted
signals (e.g., RFlI).

Other nasty things creep

In: e.g., sampler offsets.
Cf. VLA'’s transition system...

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
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Zooming in on subbands: sideband rejection "

// \ So we filter out the

unwanted sideband.
ﬂmmmﬂm In the time domain: Walsh
function switching
1 : @ Examples: VLA, ALMA
In the frequency domain:

frequency offsets put in at
the antenna and removed
In the correlator

Examples: EVLA (WIDAR'’s
“fshift”), VLBA (Doppler
offsets).

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
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Zooming in on subbands: sideband rejection

71

/ \ This knocks out the signals
/ (at some level) but not the
TN roie.
ALMA will overlap
% : ! subbands to avoid this —
at the expense of 10%-ish
of the baseband.

EVLA cannot do so when
using the widest
bandwidth (i.e., 128 MHz
subbands) = time
multiplexing?

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY




At last, the actual correlator!

72

/ |78 B I A I B \ The correlator (FX or XF)
/ . R gives a certain number of
mmmm channels across each
subband.
o 1 i Examples:
' EVLA, ALMA:

256 channels/subband split
amongst 1, 2, or 4 pol'n
products (2 MHz for 4 pol'n
products at max bandwidth)

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
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Spectral Response: XF Correlator

| N

true spectral response

convolved with (sin T, vV)/(T V)

. Twelfth Synthesis Imaging Workshop, June 8-15, 2010
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Spectral Response; Gibbs Ringing

* XF correlator: limited number of lags N

= ‘uniform’ coverage to max. lag NAt — |
= Fourier transform gives spectral response il (NAT) v

(NAT)V

- 22% sidelobes!
- Hanning smoothing

FX correlator: as XF, but Fourier transform before multiplication
= spectral response is (Sill (NAT) y} 2

(NAT) v

- 5% sidelobes

: Twelfth Synthesis Imaging Workshop, June 8-15, 2010 m
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VS.
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* n.b. IS spread across frequency by the spectral
response

ringing’ off the band edges

LARRY R. D’ADDARIO

(o) (b)

Figure 4—11. (a) The cross power spectrum resulting from a continuum source of unit flux
in the reference direction: “true complex gain.” Note the nonzero phase. (b) The computed

cross power spectrum with 16 delays.
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Higher spectral resolution 1: narrow subbands "

mwm Same number of channels

regardless of bandwidth —

f H I l \“, l “’ m‘ l i V Q just choose the lags

carefully

Example:
EVLA 31.25 kHz subband, dual
pol'n - 244 Hz channels

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY



Higher spectral resolution 2: fewer subbands "

mwm With appropriate

Interconnects one can

f ﬂ I l \“f l “’ \“‘ l i v Q trade subbands for

channels.

This is the prime mode for
ALMA.

Example:
ALMA 2 x 62.5 MHz subbands
with 8192 channels, rather
than 32 x 62.5 MHz
- 15 rather than 244 kHz
channels

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
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Higher spectral resolution 3: pol’n products -

WWW\ Avoid correlating unwanted

pol'n products (e.g.,

WO RaRo

corresponding gain in
spectral resolution.

Twelfth Synthesis Imaging Workshop, June 8-15, 2010
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Higher spectral resolution 4: recirculation

80

/ UL T \ For narrow bandwidths the
/ . correlator chips are sitting
DPTITIIIR idle much of the time.
Add memory & pipe the
% : g same data to the chips
over and over, asking for
different lags each time.
This gives a factor N more
channels for subbands of
bandwidth BW _ /N.

Twelfth Synthesis Imaging Workshop, June 8-15, 2010

New Mexico Tech
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Higher spectral resolution 4: recirculation

~
~
4 ~
m o

4 ~

/ \\\
/ ~
/ >SS

~

q\ Example: EVLA, 1 pp
BW_ =128 MHz

Ql” \“‘ Hl‘ m‘ ‘H Q 256 ch. = 500 kHz/ch

New Mexico Tech
SCIEMCE - ENGIMEERING - RESEARCH - UNIVERSITY

Select BW=2 MHz
256 ch. > 7.8 kHz/ch
Recirculation:
256 * 128/2= 16384 ch!
- 0.12 kHz/ch

New Mexico Consortium’s

Twelfth Synthesis Imaging Workshop, June 8-15, 2010
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Data rates & volumes

EVLA "RSRO” spectrum

‘ 2x1 GHz (16x128 MHz)
<ligy ‘. N e T TR 64 ch/pp/sb - 4096 ch
2 MHz channels

This Is one baseline, one
dump

EVLA: 27 ant 2> 351 bl

| 10 Blvis

o Both s o s e =14 MB/dump

Lower frame: Log1 O(Amp) Jy Top frame: Phas deg
Vector averaged cross-power spectrum Baseline: W09 (01) - E02 (02)

8 GHz/poln
=>55 MB/dump

Plot file version 1 created 26-MAY-2010 08:57:55

. Twelfth Synthesis Imaging Workshop, June 8-15, 2010 m
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Current VLA EVLA/WIDAR

Single Pol. Prod. Two Pol.Prod. Four Pol.Prod. Single Pol. Prod. Two Pol.Prod.
Bandwidth No. eq). 0. . 0. eq). Bandwidth No.

MHz Channels | Separ. | Channels | Separ. | Channels | Separ. MHz Channels . | Channels
per pol

Four Pol.Prod.

per pol «Hz per pol

16,384

250
62.5
15.625
3.906
3

131,072

131,072

131,072

131,072

131,072

, 131,072

0.5 262,14 131,072

0.25 262,14 131,072

0.125 ;

0.0625
0.03125

- NiMexivm Consurt/i-gi‘s
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