
Twelfth Synthesis Imaging Workshop
Socorro, June 8-15, 2010

Polarization in 
Interferometry

Steven T. Myers 
(NRAO-Socorro)



• Astrophysics of Polarization
• Physics of Polarization
• Antenna Response to Polarization
• Interferometer Response to Polarization
• Polarization Calibration & Observational Strategies
• Polarization Data & Image Analysis

Polarization in interferometry
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• There are lots of equations and concepts.  Hang in there.
• I will illustrate the concepts with figures and ‘handwaving’.  
• Many good references:

– Synthesis Imaging II: Lecture 6, also parts of 1, 3, 5, 32
– Born and Wolf:  Principle of Optics, Chapters 1 and 10
– Rolfs and Wilson:  Tools of Radio Astronomy, Chapter 2
– Thompson, Moran and Swenson:  Interferometry and Synthesis in 

Radio Astronomy, Chapter 4
– Tinbergen:  Astronomical Polarimetry.  All Chapters.
– J.P. Hamaker et al., A&A, 117, 137 (1996) and series of papers

• Great care must be taken in studying these references – 
conventions vary between them.  

DON’T PANIC!
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Polarization 
Astrophysics
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Why Measure Polarization?

• Electromagnetic waves are intrinsically 
polarized
– monochromatic waves are fully polarized

• Polarization state of radiation can tell us 
about:
– the origin of the radiation

• intrinsic polarization, orientation of generating B-field
– the medium through which it traverses

• propagation and scattering effects
– unfortunately, also about the purity of our optics

• you may be forced to observe polarization even if you do 
not want to!
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Astrophysical Polarization
• Examples:

– Processes which generate polarized radiation:
• Synchrotron emission:  Up to ~80% linearly polarized, with no 

circular polarization.  Measurement provides information on 
strength and orientation of magnetic fields, level of turbulence.

• Zeeman line splitting:  Presence of B-field splits RCP and LCP 
components of spectral lines by  by 2.8 Hz/µG.  Measurement 
provides direct measure of B-field.

– Processes which modify polarization state:
• Free electron scattering:  Induces a linear polarization which 

can indicate the origin of the scattered radiation.      
• Faraday rotation:  Magnetoionic region rotates plane of linear 

polarization.  Measurement of rotation gives B-field estimate.
• Faraday conversion: Particles in magnetic fields can cause the 

polarization ellipticity to change, turning a fraction of the linear 
polarization into circular (possibly seen in cores of AGN)
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Example: Radio Galaxy 3C31
• VLA @ 8.4 GHz

– Laing (1996)
• Synchrotron radiation

– relativistic plasma
– jet from central “engine”
– from pc to kpc scales
– feeding >10kpc “lobes”

• E-vectors
– along core of jet
– radial to jet at edge

3 kpc 
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Example: Radio Galaxy Cygnus A
• VLA @ 8.5 GHz   B-vectors    Perley & Carilli (1996)

10 kpc
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Example: Faraday rotation of CygA
– See review of “Cluster Magnetic Fields” by Carilli & Taylor 2002 

(ARAA)
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Example: Zeeman effect
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Example: the ISM of M51
• Trace magnetic field 

structure in galaxies
– follow spiral structure
– origin?
– amplified in dynamo?

Neininger (1992)
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Scattering

• Anisotropic Scattering induces Linear Polarization
– electron scattering (e.g. in Cosmic Microwave Background)
– dust scattering (e.g. in the millimeter-wave spectrum)

Animations from Wayne Hu

Planck predictions – Hu & Dodelson ARAA 2002
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Polarization 
Fundamentals
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The Polarization Ellipse
• From Maxwell’s equations E•B=0 (E and B perpendicular)

– By convention, we consider the time behavior of the E-field in 
a fixed perpendicular plane, from the point of view of the 
receiver.  

• For a monochromatic wave of frequency ν, we write

– These two equations describe an ellipse in the (x-y) plane.  
• The ellipse is described fully by three parameters: 

– AX, AY, and the phase difference, δ = ϕY-ϕX.
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Elliptically Polarized Monochromatic Wave
The simplest description
of wave polarization is in
a Cartesian coordinate 
frame.  

In general, three parameters 
are needed to describe  the 
ellipse. 

If the E-vector is rotating:
–clockwise, wave is ‘Left 
Elliptically Polarized’, 
–counterclockwise, is ‘Right 
Elliptically Polarized’.  
 
The angle α   atan(AY/AX) is 
used later …
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oscillators



Polarization Ellipse Ellipticity and P.A.
• A more natural description is in 

a frame (ξ η ), rotated so the ξ-
axis lies along the major axis 
of the ellipse.  

• The three parameters of the 
ellipse are then:
Aη : the major axis length

tan χ  Α ξ Α η : the axial ratio
Ψ :  the major axis p.a.

• The ellipticity χ is signed:
χ > 0  REP
χ < 0  LEP

δαχ

δα

sin2sin2sin
cos2tan2tan


Ψ

χ = 0,90°   Linear (δ=0°,180°)
χ = ±45°   Circular (δ=±90°)
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Circular Basis
• We can decompose the E-field into a circular basis, rather than a (linear) 

Cartesian one:

– where AR and AL are the amplitudes of two counter-rotating unit 
vectors, eR (rotating counter-clockwise), and e L (clockwise)

– NOTE: R,L are obtained from X,Y by δ=±90° phase shift
• It is straightforward to show that:
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Circular Basis Example

• The black ellipse can be 
decomposed into an x-
component of amplitude 
2, and a y-component of 
amplitude 1 which lags 
by ¼ turn.  

• It can alternatively be 
decomposed into a 
counterclockwise 
rotating vector of length 
1.5 (red), and a 
clockwise rotating vector 
of length 0.5 (blue).   
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The Poincare Sphere

• Treat 2ψ and 2χ as longitude and latitude on sphere of radius 
A=E2 

Rohlfs & Wilson
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Stokes parameters
• Spherical coordinates: radius I, axes Q, U, V

– I                                  = EX
2 + EY

2                 = ER
2 + EL

2

– Q = I cos 2χ cos 2ψ    = EX
2 - EY

2                 = 2 ER EL cos δRL  

– U = I cos 2χ sin 2ψ     = 2 EX EY cos δXY     = 2 ER EL sin δRL

– V = I sin 2χ                 = 2 EX EY sin δXY      = ER
2 - EL

2 

• Only 3 independent parameters:
– wave polarization confined to surface of Poincare sphere
– I2 = Q2 + U2 + V2

• Stokes parameters I,Q,U,V 
– defined by George Stokes (1852)
– form complete description of wave polarization
– NOTE: above true for 100% polarized monochromatic wave!
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Linear Polarization
• Linearly Polarized Radiation:  V = 0

– Linearly polarized flux:  

– Q and U define the linear polarization position angle:

– Signs of Q and U:

QU /2tan ψ

Q > 0

Q < 0Q < 0

Q > 0

U > 0

U > 0

U < 0

U < 0

22 UQP 
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Simple Examples
• If V = 0, the wave is linearly polarized.  Then, 

– If U = 0, and Q positive, then the wave is vertically polarized, Ψ=0°

  
– If U = 0, and Q negative, the wave is horizontally polarized, Ψ=90°

– If Q = 0, and U positive, the wave is polarized at Ψ = 45°

– If Q = 0, and U negative, the wave is polarized at Ψ = -45°.  
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Illustrative Example: Non-thermal Emission from Jupiter

• Apr 1999 VLA 5 GHz data
• D-config resolution is 14” 
• Jupiter emits thermal 

radiation from atmosphere, 
plus polarized synchrotron 
radiation from particles in its 
magnetic field

• Shown is the I image 
(intensity) with polarization 
vectors rotated by 90° (to 
show B-vectors) and 
polarized intensity (blue 
contours)

• The polarization vectors 
trace Jupiter’s dipole  

• Polarized intensity linked to 
the Io plasma torus
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Why Use Stokes Parameters?
• Tradition
• They are scalar quantities, independent of basis XY, RL
• They have units of power (flux density when calibrated)
• They are simply related to actual antenna measurements.
• They easily accommodate the notion of partial polarization of 

non-monochromatic signals.  
• We can (as I will show) make images of the I, Q, U, and V 

intensities directly from measurements made from an 
interferometer.  

• These I,Q,U, and V images can then be combined to make 
images of the linear, circular, or elliptical characteristics of 
the radiation.  
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Partial Polarization

• Monochromatic radiation is a myth.  
• No such entity can exist (although it can be closely 

approximated).  
• In real life, radiation has a finite bandwidth.  
• Real astronomical emission processes arise from randomly 

placed, independently oscillating emitters (electrons).  
• We observe the summed electric field, using instruments of 

finite bandwidth.  
• Despite the chaos, polarization still exists, but is not 

complete – partial polarization is the rule.  
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Stokes parameters defined in terms of mean quantities:

Note that now, unlike monochromatic radiation, the 
radiation is not necessarily 100% polarized.

Stokes Parameters for Partial Polarization
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Summary – Fundamentals
• Monochromatic waves are polarized
• Expressible as 2 orthogonal independent transverse waves

– elliptical cross-section  polarization ellipse
– 3 independent parameters
– choice of basis, e.g. linear or circular

• Poincare sphere convenient representation
– Stokes parameters I, Q, U, V
– I intensity; Q,U linear polarization, V circular polarization

• Quasi-monochromatic “waves” in reality
– can be partially polarized
– still represented by Stokes parameters
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Antenna Polarization
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Measuring Polarization on the sky

• Coordinate system dependence:
– I independent
– V depends on choice of “handedness”

• V > 0 for RCP
– Q,U depend on choice of “North” (plus handedness)

• Q “points” North, U 45 toward East

• Polarization Angle Ψ 
  Ψ = ½ tan-1  (U/Q)    (North through East)

– also called the “electric vector position angle” (EVPA)
– by convention, traces E-field vector (e.g. for synchrotron)
– B-vector is perpendicular to this

Q

U
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Optics – Cassegrain radio telescope 
• Paraboloid illuminated by feedhorn:
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Feeds arranged in 
focal plane (off-axis)



Optics – telescope response 
• Reflections

– turn RCP  LCP
– E-field (currents) allowed only in plane of surface

• “Field distribution” on aperture for E and B planes:

Cross-polarization
at 45°

No cross-polarization
on axes
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Example – simulated VLA patterns
• EVLA Memo 58 “Using Grasp8 to Study the VLA Beam” W. 

Brisken

Linear Polarization Circular Polarization cuts in R & L
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Example – measured VLA patterns
• AIPS Memo 86 “Widefield Polarization Correction of VLA 

Snapshot Images at 1.4 GHz” W. Cotton (1994)

Circular Polarization Linear Polarization
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Polarization Reciever Outputs
• To do polarimetry (measure the polarization state of the EM 

wave), the antenna must have two outputs which respond 
differently to the incoming elliptically polarized wave.  

• It would be most convenient if these two outputs are 
proportional to either:
– The two linear orthogonal Cartesian components, (E X, EY) as in ATCA 

and ALMA
– The two circular orthogonal components, (E R, EL) as in VLA

• Sadly, this is not the case in general.  
– In general, each port is elliptically polarized, with its own polarization 

ellipse, with its p.a. and ellipticity. 
• However, as long as these are different, polarimetry can be 

done.   

S.T. Myers – Twelfth Synthesis Imaging Workshop, June 8, 2010



Polarizers:  Quadrature Hybrids
• We’ve discussed the two bases commonly used to describe polarization. 
• It is quite easy to transform signals from one to the other, through a real 

device known as a ‘quadrature hybrid’. 

• To transform correctly, the phase shifts must be exactly 0 and 90 for all 
frequencies, and the amplitudes balanced.  

• Real hybrids are imperfect – generate errors (mixing/leaking)
• Other polarizers (e.g. waveguide septum, grids) equivalent

0

0

90 90

X

Y

R

L

Four Port Device:
2 port input

2 ports output
mixing matrix
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Polarization 
Interferometry
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Four Complex Correlations per Pair
• Two antennas, each 

with two differently 
polarized outputs, 
produce four 
complex 
correlations.  

• From these four 
outputs, we want to 
make four Stokes 
Images.

L1R1

X X X X

L2R2

Antenna 1 Antenna 2

RR1R2 RR1L2 RL1R2 RL1L2
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Outputs: Polarization Vectors

• Each telescope receiver has two outputs
– should be orthogonal, close to X,Y or R,L
– even if single pol output, convenient to consider 

both possible polarizations (e.g. for leakage)
– put into vector
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Correlation products: coherency vector

• Coherency vector: outer product of 2 antenna vectors as 
averaged by correlator

– these are essentially the uncalibrated visibilities v 
• circular products RR, RL, LR, LL
• linear products XX, XY, YX, YY

– need to include corruptions before and after correlation
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Polarization Products: General Case

)]}cos()sin()sin()[cos(
)]cos()sin()sin()[cos(
)]sin()sin()cos()[cos(

)]sin()sin()cos()[cos({2
1

qpqpqpqp

qpqpqpqp

qpqpqpqp

qpqpqpqppq
pq

iV

iiU

iQ

iIGv

χχχχ

χχχχ

χχχχ

χχχχ

ΨΨΨΨ

ΨΨΨΨ

ΨΨΨΨ

ΨΨΨΨ

What are all these symbols?  
vpq  is the complex output from the interferometer, for polarizations

p and q from antennas 1 and 2, respectively.
Ψ and χ are the antenna polarization major axis and ellipticity for 

states p and q.  
I,Q, U, and V are the Stokes Visibilities describing the polarization

state of the astronomical signal.  
G is the gain, which falls out in calibration.  

CONVENTION – WE WILL ABSORB FACTOR ½ INTO GAIN!!!!!!!
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Coherency vector and Stokes vector

• Maps (perfect) visibilities to the Stokes vector s 
• Example: circular polarization (e.g. VLA)

• Example: linear polarization (e.g. ALMA, ATCA)
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Corruptions: Jones Matrices
• Antenna-based corruptions

– pre-correlation polarization-dependent effects act as a matrix muliplication.  
This is the Jones matrix:

– form of J depends on basis (RL or XY) and effect
• off-diagonal terms J12  and J21  cause corruption (mixing)

– total J is a string of Jones matrices for each effect

• Faraday, polarized beam, leakage, parallactic angle
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Parallactic Angle, P
• Orientation of sky in telescope’s 

field of view
– Constant for equatorial telescopes
– Varies for alt-az telescopes
– Rotates the position angle of linearly 

polarized radiation (R-L phase)
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– defined per antenna (often same over array)

– P modulation can be used to aid in calibration
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Visibilities to Stokes on-sky: RL basis

• the (outer) products of the parallactic angle (P) and the 
Stokes matrices gives

• this matrix maps a sky Stokes vector to the coherence vector 
representing the four perfect (circular) polarization products:
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Visibilities to Stokes on-sky: XY basis

• we have

• and for identical parallactic angles ϕ between antennas:
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• An interferometer naturally measures the transform of 
the sky intensity in uv-space convolved with aperture
– cross-correlation of aperture voltage patterns in uv-plane
– its tranform on sky is the primary beam A with FWHM ~ λ/D

– The “tilde” quantities are Fourier transforms, with convention:

Basic Interferometry equations
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Polarization Interferometry : Q & U
• Parallel-hand & Cross-hand correlations (circular basis)

– visibility k (antenna pair ij , time, pointing x, channel ν, noise n):

– where kernel A is the aperture cross-correlation function, ϕ is the parallactic angle, and Q+iU=P is the complex linear 
polarization

• the phase of P is φ (the R-L phase difference)
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Example: RL basis imaging

• Parenthetical Note:
– can make a pseudo-I image by gridding RR+LL on the 

Fourier half-plane and inverting to a real image
– can make a pseudo-V image by gridding RR-LL on the 

Fourier half-plane and inverting to real image
– can make a pseudo-(Q+iU) image by gridding RL to the 

full Fourier plane (with LR as the conjugate) and inverting 
to a complex image

– does not require having full polarization RR,RL,LR,LL for 
every visibility (unlike calibration/correction of visibilities)

• More on imaging ( & deconvolution ) tomorrow!
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Polarization Leakage, D
• Polarizer is not ideal, so orthogonal polarizations not 

perfectly isolated
– Well-designed systems have d < 1-5% (but some systems >10%  )
– A geometric property of the antenna, feed & polarizer design

• frequency dependent (e.g. quarter-wave at center ν)
• direction dependent (in beam) due to antenna

– For R,L systems
• parallel hands affected as d•Q + d•U , so only important at high dynamic 

range (because Q,U~d, typically)
• cross-hands affected as d•I so almost always important

Leakage of q into p
(e.g. L into R)
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Leakage revisited…
• Primary on-axis effect is “leakage” of one polarization into 

the measurement of the other (e.g. R  L)
– but, direction dependence due to polarization beam!

• Customary to factor out on-axis leakage into D and put 
direction dependence in “beam”
– example: expand RL basis with on-axis leakage

– similarly for XY basis
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Example: RL basis leakage
• In full detail:

 

 dldmemleidd

eded

eimlEV

dldmemledd

iedied

emlEV

mvluiχiL
j

R
i

χiL
j

χiR
i

χi

sky

RL
ij

RL
ij

mvluiχiR
j

R
i

χiR
j

χiR
i

χi

sky

RR
ij

RR
ij

ijijji

jiji

ji

ijijji

jiji

ji





























πχ

χχ

χ

πχ

χχ

χ

2)(*

)(*)(

)(

2)(*

)(*)(

)(

),](U)Q(

)VI()VI(

U)Q)[(,(

),](V)-(I 

 U)(QU)(Q

V)I)[(,(

“true” signal
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Example: linearized leakage
• RL basis, keeping only terms linear in I,Q±iU,d:

• Likewise for XY basis, keeping linear in I,Q,U,V,d,sin(ϕi-ϕj)

WARNING: Using linear order will limit dynamic range!
(dropped terms have non-closing properties)
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Ionospheric Faraday Rotation, F
• Birefringency due to magnetic field in ionospheric plasma

– also present in ISM, IGM and intrinsic to radio sources!
• can come from different Faraday depths  tomography
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Antenna voltage pattern, E

• Direction-dependent gain and polarization
– includes primary beam 

• Fourier transform of cross-correlation of antenna voltage patterns
• includes polarization asymmetry (squint)

– includes off-axis cross-polarization (leakage)
• convenient to reserve D for on-axis leakage

– important in wide-field imaging and mosaicing
• when sources fill the beam (e.g. low frequency)
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Summary – polarization interferometry
• Choice of basis: CP or LP feeds

– usually a technology consideration
• Follow the signal path

– ionospheric Faraday rotation F at low frequency
• direction dependent (and antenna dependent for long baselines)

– parallactic angle P for coordinate transformation to Stokes
• antennas can have differing PA (e.g. VLBI)

– “leakage” D varies with ν and over beam (mix with E)
• Leakage

– use full (all orders) D solver when possible
– linear approximation OK for low dynamic range
– beware when antennas have different parallactic angles
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Polarization 
Calibration

& Observation
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So you want to make a polarization image…
• Making polarization images

– follow general rules for imaging
– image & deconvolve I, Q, U, V 

planes
– Q, U, V will be positive and 

negative
– V image can often be used as 

check (if no intrinsic V-pol)
• Polarization vector plots

– EVPA calibrator to set angle (e.g. 
R-L phase difference)
 Φ = ½ tan-1 U/Q for E vectors

– B vectors ┴ E 
– plot E vectors (length given by P)

• Leakage calibration is essential
• See Tutorials on Friday

e.g Jupiter 6cm continuum
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Strategies for leakage calibration
• Need a bright calibrator!  Effects are low level…

– determine antenna gains independently (mostly from parallel hands)
– use cross-hands (mostly) to determine leakage

• however, cross-hand leakage insufficient to correct parallel-hands
– do matrix solution to go beyond linear order

• Calibrator is unpolarized
– leakage directly determined (ratio to I model), but only to an overall complex 

constant (additive over array)
– need way to fix phase δp-δq (ie. R-L phase difference), e.g. using another 

calibrator with known EVPA

• Calibrator of known (non-zero) linear polarization
– leakage can be directly determined (for I,Q,U,V model)

• for a single scan only within an overall offset (e.g. sum of D-terms)
– unknown p-q phase can be determined (from U/Q etc.)
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Other strategies
• Calibrator of unknown polarization

– solve for model IQUV and D simultaneously or iteratively
– need good parallactic angle coverage to modulate sky and 

instrumental signals
• in instrument basis, sky signal modulated by e i2χ 

• With a very bright strongly polarized calibrator
– can solve for leakages and polarization per baseline
– can solve for leakages using parallel hands!

• With no calibrator
– hope it averages down over parallactic angle
– transfer D from a similar observation

• usually possible for several days, better than nothing!
• need observations at same frequency
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Parallactic Angle Coverage at VLA
• fastest PA swing for source passing through zenith

– to get good PA coverage in a few hours, need calibrators between 
declination +20° and +60° 
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Finding polarization calibrators
• Standard sources

– planets (unpolarized if 
unresolved)

– 3C286, 3C48, 3C147 (known 
IQU, stable)

– sources monitored (e.g. by 
VLA)

– other bright sources (bootstrap)

http://www.vla.nrao.edu/astro/calib/polar/
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Example: VLA D-term calibration
• D-term calibration effect on RL visibilities (should be Q+iU):
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Example: VLA D-term calibration
• D-term calibration effect in Q image plane :

Bad D-term solution Good D-term solution
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Example: EVLA D-term calibration
• C-band D-term calibration as a function of frequency (OSRO-1 mode):

– frequency-dependent effects over wide bands, beware of cross-hand delays
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Example: EVLA D-term calibration
• C-band D-term calibration as a function of antenna (OSRO-1 mode):

– frequency-dependent effects over wide bands, beware of cross-hand delays
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Example: EVLA EVPA calibration
• C-band R-L phase as a function of frequency (OSRO-1 mode):

– solve for single-phase and cross-hand delay over array
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Summary – Observing & Calibration
• Follow normal calibration procedure (see next lecture)
• Need bright calibrator for leakage D calibration

– bright calibrator with known polarization
– unpolarized (or very low polarization) sources see only leakage

• Parallactic angle coverage useful
– necessary for unknown calibrator polarization

• Need to determine unknown p-q phase
– CP feeds need EVPA calibrator (known strong Q,U) for R-L phase
– if system stable, can transfer from other observations

• Upshot – build polarization calibration into schedule
– if you need PA coverage, will be observing near zenith
– watch antenna wraps (particularly in dynamic scheduling)!
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Special Considerations – EVLA & ALMA
• Wideband calibration issues

– D-term and p-q phase corrections as function of frequency
– need bright source to solve on per-channel basis

• Delay issues
– parallel-hand delays taken out in bandpass
– need to remove cross-hand delays in or before Pol calibration

• High-dynamic range issues
– D-term contribution to parallel-hand correlations (non-closing)
– wide-field polarization imaging/calibration algorithm development

• direction-dependent voltage beam patterns needed

• Special issues
– EVLA circular feeds: observing V difficult
– ALMA linear feeds: gain calibration interaction
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