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Why Calibration and Editing?

Synthesis radio telescopes, though well-designed, are not perfect (e.g., surface
accuracy, receiver noise, polarization purity, gain stability, geometric model
errors, etc.)

Need to accommodate deliberate engineering (e.g., frequency conversion,
digital electronics, filter bandpass, etc.)

Hardware or control software occasionally fails or behaves unpredictably

Scheduling/observation errors sometimes occur (e.g., wrong source positions)

Atmospheric conditions not ideal

RFI

Determining instrumental properties (calibration)

IS a prerequisite to

determining radio source properties
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From ldealistic to Realistic

Formally, we wish to use our interferometer to obtain the visibility function:

- 127 (ul
Viu,v) = f](l,m)e e dldm
...which we intend to invert to obtain an image of the sky:
I(,m) = (V(u,v)e™ "™ dudy
’ ’
uv

V(u,v) set the amplitude and phase of 2D sinusoids that add up to an image of the sky

How do we measure V(u,v)?
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From ldealistic to Realistic

In practice, we correlate (multiply & average) the electric field (voltage)
samples, xi & xj, received at pairs of telescopes (i,j) and processed through the
observing system:

VObS(u v) <x.(t) °x>'f(t)>m

ij? ! J

=J, V””e(u v, )

l],

xi & xj are delay-compensated for a specific point on the sky

Averaging duration is set by the expected timescales for variation of the correlation
result (~seconds)

Jij is an operator characterizing the net effect of the observing process for
baseline (i,j), which we must calibrate

Sometlmes Jij corrupts the measurement irrevocably, resulting in data that
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What Is Delivered by a Synthesis
Mornauxigt of complex numbers! (Enormous!)

E.g., the EVLA:

At each timestamp (~Is intervals): 35| baselines (+ 27 auto-correlations)
For each baseline: 1-64 Spectral Windows (“subbands” or “IFs”)

For each spectral window: tens to thousands of channels

For each channel: |, 2, or 4 complex correlations
« RRorLLor (RR,LL), or (RR,RLLR,LL)

With each correlation, a weight value

Meta-info: Coordinates, antenna, field, frequency label info

Ntotal = Nt x Nbl x Nspw x Nchan x Ncorr visibilities

EVLA: ~1300000 x Nspw x Nchan x Ncorr vis/hour (10s to 100s of GB per observation)
ALMA: ~3-5X more baselines than EVLA...
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The Array
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UV-coverages
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The Visibility Data (source colors)

Amp vs. Time
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The Visibility Data (baseline colors)

Amp vs. Time

0.5 -
7 Spw: 0 Ch: <22~41> Corr: RR 3C84 (instr. poln)

0.4

03 i 3C286 (flux density)

p i - : > E J1822-0938 (cal) alt. with 7 3C391 Mosaic Pgintings

-01 -

I T T T T | T T T T I T T T T | T T T T | T T T T | T T T T | T T T T I
07:13:20 08:36:40 10:00:00 11:23:20 12:46:40 14:10:00 15:33:20 16:56:40
Time (from 2010/04/24)

m New Mexico _
New Mexico Tech Tech CONSORTIUM
“SCIENCE - ENGINEERING - RESEARCH - UNIVERSITY The Unlvermy of New Mexico




The Visibility Data (baseline colors)

Phase vs. Time
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The Visibility Data (baseline colors)

Phase vs. Time
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A Single Baseline - Amp

Amp vs. Time
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A Single Baseline - 2 scans on 3C286

Phase vs. Time
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Single Baseline, Single Integration
Visibility Spectra (4 correlations)

Amp vs. Frequency Phase vs. Frequency
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Single Baseline, Single Scan
Visibility Spectra (4 correlations)

Amp vs. Frequency
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Single Baseline, Single Scan (time-

averaged)
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Data Examination and Editing

After observation, initial data examination and editing very important

Will observations meet goals for calibration and science requirements?
What to edit:

Some real-time flagging occurred during observation (antennas off-source, LO out-of-lock, etc.). Any such bad
data left over! (check operator’s logs)

Any persistently ‘dead’ antennas (check operator’s logs)

Periods of especially poor weather? (check operator’s log)

Any antennas shadowing others? Edit such data.

Amplitude and phase should be continuously varying—edit outliers
Radio Frequency Interference (RFI)?

Caution:

Be careful editing noise-dominated data (noise bias).

Be conservative: those antennas/timeranges which are bad on calibrators are probably bad on weak target
sources—edit them

Distinguish between bad (hopeless) data and poorly-calibrated data. E.g., some antennas may have signifi cantly
different amplitude response which may not be fatal—it may only need to be calibrated

Choose reference antenna wisely (ever-present, stable response)

creasing data volumes increasingly demand automated editing algorithms...
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Radio Frequency Interference (RFI)

RFI originates from man-made signals generated in the antenna electronics
or by external sources (e.g., satellites, air traffic, cell-phones, radio and TV
stations, automobile ignitions, microwave ovens, computers and other
electronic devices, etc.)

Adds to total noise power in all observations, thus decreasing the fraction of desired
natural signal passed to the correlator, thereby reducing sensitivity and possibly
driving electronics into non-linear regimes

Can correlate between antennas if of common origin and baseline short enough
(insufficient decorrelation via geometry compensation), thereby obscuring natural
emission in spectral line observations

Least predictable, least controllable threat to a radio astronomy observation
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Radio Frequency Interference

Has always been a problem (Reber, 1944, in total power)!
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Radio Frequency Interference (cont)

Growth of telecom industry threatening radioastronomy!
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Radio Frequency Interference (cont)
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Radio Frequency Interference (cont)

Average spectrum for 2010-06-02
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Radio Frequency Interference (cont)

30 Peak hold for 2010-06-02
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Radio Frequency Interference (cont)

RFI Mitigation

Careful electronics design in antennas, including fi lters, shielding, blanking in the correlator
High-dynamic range digital sampling

Observatories world-wide lobbying for spectrum management

Choose interference-free frequencies (very diffi cult in EVLA |-2 GHz band, for continuum
bandwidths)

Observe continuum experiments in spectral-line modes so affected channels can be edited

Various off-line mitigation techniques under study

E.g., correlated RFI power that originates in the frame of the array appears at celestial pole (also
stationary in array frame) in image domain...

Ue-Li Pen’s lecture “Radio Frequency Interference Excision” (Thursday)
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Editing Example

Amp vs. Time
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Editing Example

Amp vs. Time

Scans 34-41

0154 Scan transitions/setup
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Editing Example

Amp vs. Time

Scans 34-41

Flagged
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Editing Example

Amp vs. Time
054
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Practical Calibration
Considerationsbs o)

Antenna positions, earth orientation and rate

Clocks

Antenna pointing, gain curve, voltage pattern

Calibrator coordinates, flux densities, polarization properties
Tsys, system gain (EVLA)

Absolute engineering calibration?

Very difficult, would require heroic efforts by observatory scientifi c and engineering staff (hot/cold loads,
climbing ladders, etc.)

Concentrate instead on ensuring instrumental stability on adequate timescales
Cross-calibration a better choice

Observe nearby point sources against which calibration (Jij) can be solved, and transfer solutions to target
observations

Choose appropriate calibrators; usually strong point sources because we can easily predict their visibilities

Choose appropriate timescales for calibration
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“Absolute” Astronomical
Calibrations:-

Radio astronomy flux density scale set according to several “constant” radio
sources

Use resolved models where appropriate
Astrometry

Most calibrators come from astrometric catalogs; directional accuracy of target
images tied to that of the calibrators

Beware of resolved and evolving structures, and phase transfer biases due to
troposphere (especially for VLBI)

Linear Polarization Position Angle

Usual flux density calibrators also have significant stable linear polarization
position angle for registration

Relative calibration solutions (and dynamic range) insensitive to errors in these
‘'scaling” parameters
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Baseline-based Cross-Calibration

obs __ mod
Vlfi _ Jl] Vij

Simplest, most-obvious calibration approach: measure complex response of
each baseline on a standard source, and scale science target visibilities
accordingly

“Baseline-based” Calibration

Only option for single baseline “arrays” (3-antenna arrays are effectively
baseline-based for per-integration amplitude calibration)

Calibration precision same as calibrator visibility sensitivity (on timescale of
calibration solution).

Calibration accuracy sensitive to departures of calibrator from known
structure
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Antenna-based Cross Calibration

Measured visibilities are formed from a product of antenna-based signals.
Can we take advantage of this fact?

e.g., bandpass...
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Rationale for Antenna-based
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Antenna-based Cross Calibration

The net time-dependent (t) signal delivered by antenna i, xi(t), is a
combination of the desired signal, si(t,,m), corrupted by a factor Ji(t,m)
and integrated over the sky (l,m), and diluted by noise, ni(t):

x, (1) = J'JZ. (t,l,m)s,(t,l,m)dldm +n_(t)
sky
=5(1) +n,(1)

xi(t) is sampled voltage at the correlator input

Ji(t,m) is the product of a series of effects encountered by the incoming
signal

Ji(t,Lm) is an antenna-based complex number

sually, |ni |>> |si]
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Correlation of Realistic Signals - |

The correlation of two realistic (aligned for a specific direction) signals from different
antennas:
* en) s +n,)
<xl. -x.> =<(S. +n) \s" +n, >
J [ At i i J AN
— ’ r¥ ’ * r* *
=55 V(s n Ve () ()
» Noise correlations have zero mean—even if | ni|>> |si|, the correlation process isolates

desired signals:
— ’ 1%
={s; )

- fJiSi (t,L;,m;)dldm, - fJ;S; (t,4;,m)dl,;dm,
sky sky

At

» Inintegral, only si(t,m) from the same directions correlate (i.e., when li=lj, mi=mj), so
order of integration and signal product can be reversed:

= fJiJ;si(t,l,m)sj(t,l,m)dldm
sky At

“‘ @ New Mesico [
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Correlation of Realistic Signals - 1I

The si & sj are the common radio source signals, and differ only by the relative arrival
phase at each antenna, which varies with direction. This is the Fourier phase term (to a
good approximation), which we factor out:

[

2 e- 27 (uyl+vym)dldm>

At

On the timescale of the averaging, the only meaningful average is of the squared source

signal itself (in each dlrectlon) wh|ch {S just the ir age O hle sopirce:
=127 M +VJ dldm

_r * -i23'c(uijl+v,~im)
= \J.J I, m)e " dldm

If all J=1I, we of course recover ]V?li‘;ﬁ%é%ﬂ"éssjdﬁldm
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Aside: Auto-correlations and Single

D i s‘h égorrelation of a signal from a single antenna:
<xl. -x;>m =<(Slf + nl.) (Sl +7, )*>A
t

(s )+ )

n.

1

)
2](Z,m)dldm+<nl 2>

o This is an integrated (sky) péq\lgvyer measurement plus non-zero noise

o Desired signal not isolated from noise
» Noise usually dominates

Single dish radio astronomy calibration strategies rely on switching schemes to isolate desired signal from
the noise

" New Mexico _
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The Scalar Measurement Equation

po = (1510 mye > didm

First, isolate non-direction-dependent effects, and factor them from the integral:

=(JiviSJ}/is*) J(JlskyJ]sky* )](l, m)e- i2:n:(uijl+vl-jm)dldm

Next, we recognize that over small fields of view, it is possible to assume Jsky=1,and we have a
relationship between ideal and observed Visibilities:

=(Jl-ViSJ;iS*) f](l, m)e-iZn(uvaijm)dldm

obs _( VIS vis*) true __ *y rtrue
Vl'j - Ji Jj Vij _Ji JJ Vlj

Standard calibration of most existing arrays reduces to solving this last equation for the Ji assuming a
visibility model Vijmod for a calibrator

m New Mexico _
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Solving for the Ji

We can write: pobs oy yrymed —
ij i
..and define chi-squared: 2 } *1rmod |2
x' = STV Wy
i%]

..and minimize chi-squared w.r.t. each Ji*, yielding (iteration):

_Z mode Z(‘Jj‘zwij) Z);z =

l;t] 1#]

e (...which we may recognize as a weighted average of the Ji contribution to the chi-
squared equation)

m New Mexico
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Solving for Ji (cont)

For a uniform array (~same sensitivity on all baselines, ~same calibration
magnitude on all antennas), it can be shown that the error in the
calibration solution is:

o (A)
-y JyN,, -1

O

O,

Calibration error decreases with increasing calibrator strength and
square-root of Nant (c.f. baseline-based calibration).

Other properties of the antenna-based solution:
Minimal degrees of freedom (Nant factors, Nant(Nant-1)/2 measurements)

Net calibration for a baseline involves a phase difference, so absolute directional
information is lost

*

j rc...
. "L"' New Mexico _
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Antenna-based Calibration and
Succe I)b)sttiiﬁélescopes relies on antenna-based calibration

Fundamentally, any information that can be factored into antenna-based terms, could be antenna-based
effects, and not source visibility

For Nant > 3, source visibility information cannot be entirely obliterated by any antenna-based
calibration

Observables independent of antenna-based calibration:

Closure phase (3 baselines):

@+ + =lg +0,- 0 )+ gl +6, - 0,)+ g +0, - 6

J

Closure amplitude (4 basellneg

VZJO SV JJ VtrueJ J Vl‘l’ue Vl]l‘rueVl‘rue

V]?bSV(Z)bS J J Vtrue J J true llz;rue .true

Jjl

! J
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Simple Scalar Calibration Example

Sources:

Science Target: 3C391 (7 mosaic pointings)

Near-target calibrator: ] 1822-0938 (~1 | deg from target; unknown fl ux density, assumed | Jy)
Flux Density calibrators: 3C286 (7.747 ]y, essentially unresolved)

Signals:

RR correlation only for this illustration (total intensity only)

One spectral window centered at 4600 MHz, 128 MHz bandwidth

64 observed spectral channels averaged with normalized bandpass calibration applied (this illustration
considers only the time-dependent ‘gain’ calibration)

(extracted from a continuum polarimetry mosaic observation)
Array:
EVLA D-configuration (Apr 2010)
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Views of the Uncalibrated Data

Amp vs. Time Phase vs. Time
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Views of the Uncalibrated Data
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Views of the Uncalibrated Data

Phase vs. UVDist
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Uncalibrated Images
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Rationale for Antenna-based

Calihratinn
Phase vs. Time Phase vs. Time
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The Calibration Process

Solve for antenna-based gain factors for each scan on all calibrators:

V;;bs =( Gl- G;‘ )V;;nod

Bootstrap flux density scale by enforcing gain consistency over all

calibrators: <Gl-(a” CalS)> =<Gi(fd Cal)>

-1 ,~%1|1,0b
Correct data (inter{%?:%e,ﬁ('@ldeﬂj )V; >
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The Antenna-based Calibration

Solution

] b ' g
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The Antenna-based Calibration
Solution | —_—
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The Antenna-based Calibration

|
G table: G G table: Gflx
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3C286’s gains have correct scale
Thus, J1822-0938 is 2.32 Jy (not | ]y, as assumed)
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Effect of Antenna-based Calibration

Phase vs. Time
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Effect of Antenna-based Calibration

Amp vs. Time Phase vs. Time
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Effect of Antenna-based Calibration

Amp vs. UVDist Amp vs. UVDist Amp vs. UVDist
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Effect of Antenna-based Calibration

Phase vs. UVDist Phase vs. UVDist Phase vs. UVDist
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Calibration Effect on Imaging
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Evaluating Calibration Performance

Are solutions continuous?

Noise-like solutions are just that—noise (beware calibration of pure noise generates a
spurious point source)

Discontinuities indicate instrumental glitches

Any additional editing required?

Are calibrator data fully described by antenna-based effects!?
Phase and amplitude closure errors are the baseline-based residuals

Are calibrators sufficiently point-like? If not, self-calibrate: model calibrator visibilities (by
imaging, deconvolving and transforming) and re-solve for calibration; iterate to isolate
source structure from calibration components

* Mark Claussen’s lecture: “Advanced Calibration” (VWednesday)

Any evidence of unsampled variation? Is interpolation of solutions appropriate?

Reduce calibration timescale, if SNR permits

taaf van Moorsel’s lecture: “Error Recognition” (VWednesday)
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Summary of Scalar Example

Dominant calibration effects are antenna-based

e Minimizes degrees of freedom
* More precise
* Preserves closure

e Permits higher dynamic range safely!

Point-like calibrators effective

Flux density bootstrapping

New Mexico _
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Full-PoIarization Formalism

. % ) to fully sample the incoming EM wave front, where p,q = R.L
p.q Y P 8 p.q
ckcular baS|s) or p,g =X Y inear basis):

- A b d - A >
L 0 4 <«

A d A d

Live =S siores L =Sid siokes
RR 1 0 0 1YV\[/ I1+V XX 1
RL 0O 1 i 0|0 O+iU XY 0
LR 0O 1 -i 0|U O-iU YX 0 U-iVv
LL 1 0 0 -1)\V I-V YY 1 0O 0NV I-0

Devices can be built to sample these circular (R,L) or linear (X)Y) basis states in the signal domain
(Stokes Vector is defined in “power” domain)

0 I I1+0
1 i (|0 U+il
1 U

—_O O =

Some components of Ji involve mixing of basis states, so dual-polarization matrix description
desirable or even required for proper calibration

m New Mexico _
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Full-Polarization Formalism: Signal
Ramain

-~

The Jones matrix thus corrupts the vector wavefront signal as follows:

S, =J,S; (s integral onited)

SN (S TP\ (s
() e 2 )e)
(JP PSP + 7P

\.FHQSP +J7 s )l_
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Full-Polarization Formalism:
F@nrrelaat ionpolﬁizaclms. The outer product (a ‘bookkeeping’ product) represents correlation in the
m rmalfSm:

2 AN
({s7 s7)
- - - * P .ot
p p .
true _ \ — S S —_— <Si Sj >
V. =(s, ®s, )= ® =
y ! J q *q q9 .P
\) S AR
A very useful property of outer products: J
ot )
\\ ST
~ - - & 1 e & @ - &
o oe) el A o s oat) < e
V,m =\, s, ) =\Js,/@\J s, ) =\J, ®J s, ®s, Vi
* New Mexico Tech ” U':‘:'N“ . EONSORTIUN Y
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Full-Polarization Formalism: Correlation

- TI! outer product for the Jones matrix:

@& D p—o D q—p *p—p *q— p

r < _(J J; Jj Jj

J; ® I 7| rpog q—q ® Jirma gt
Ji Ji J J

%k %k % E 3
Jl_pH p ijﬁp Jip%p quﬂp Jiqﬁp ij%p Jicﬁp quﬂp
JpHpJ”fp—*q Jp—>pJ”fq—>q Jg—>p']"fp—>q Jg—>pJ"fq—>q
J

i j i j i j i

%k ES % *
Jip—> qup—> p Jip—> q qu—> p Jiq—> qup—> p Jiq—> qu q—p
p—q 1*p—q pP—q 1% ¢q q9—q 7 *p—q 9—q 7q—q

Jij is a 4x4 Mueller matrix
This is starting to get ugly.....

Antenna and array design driven by minimizing off-diagonal terms!
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Full-Polarization Formalism: Correlation

- ||Ic|ﬁnally, for fun, the correlation of corrupted signals:

(')_> (')_' ((4) (')

J®J)(S ®;)

J S, ®J S
N * N * N EIEN N *,_ p *p
Jl_p ijp p Jl_p ijq P Jiq ijp P Jiq ijq p <Si S| >
_ Jip—>p J;’fp—w Jip—>p J;‘fq—w] Jiq—>p J;p—w] Jl_q—>p J;q—wz < SiP .S;‘fq>
- Jip_>q J;p—m Jip—>q J;’fq—uv Jiq—w] J;p—uv Jiq—w J;q—uv < Siq ,S;‘fp>
Jl_p—w} J]”fp—>q Jip—’q J;’fq—wi Jiq—>q J;fp—wz Jiq—>q J;q—wz <Siq .S;q>

Jp—>pJ p—>p<Sp ,S;p>+ Jp—>pJ q—>p<Sp ,S"fq>+ Jq—>pJ p—>p<Sq P

P 17— p ) 4 .t
; DS P S, Ji <S S,

) )
q—>p *1mq )9 P q—>p *—q /9 %
+ J; <Sl 'S > ;NS S
- — *
Jq qu p<Sq S_p>

+
* <
+ Jriyg q—>p<Sq -
+ <

p—>pJ *p—q L4 ,S*p + p—>pJ *q—q L4 ,S*q
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Y
.

UGLY but we rarely, if ever, need to worry about detail at this level---just let this
“inside” the matrix formalism, and work with the matrix short-hand notation
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The Matrix Measurement Equation

We can now write down the Measurement Equation in matrix notation:

-

yo = J(J 0 S ST (1, mye” I g
sky

S maps Stokes parameters onto observed basis

..and consider how the Ji are products of many effects.
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A Dictionary of Calibration
G@mponmt\s in principle:

F = ionospheric effects
e T =tropospheric effects
e P = parallactic angle

e X = linear polarization position angle

Ao
e E =antenna voltage pattern “ ‘) « ‘) « ‘) “ ‘) « ‘) \ ‘) « ‘) \ ‘)(' QX ‘)

. D = polarization leakage J K B G D E X PT F

e G = electronic gain
e B =bandpass response
¢ K= geometric compensation

e M, A = baseline-based corrections

Order of terms follows signal path (right to left)

Each term has matrix form of Ji with terms embodying its particular algebra (on- vs.
off-diagonal terms, etc.)

Direction-dependent terms must stay inside FT integral

FuII’ calibration is traditionally a bootstrapping process wherein relevant terms
( suaIIy a minority of above Ilst) are considered in decreasing order of dominance,

I
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lonospheric Effects, F

A
<

& 3 < - Qi
R —eiA“P(e 0 ] P _el.Acp(coss sms)
= : =

0 " SINE  COSE
. . , : -2
The ionosphere introduces a dispersive path-length offset: A o N, cm
* More important at lower frequencies (<5 GHz) v
e Varies more at solar maximum and at sunrise/sunset, when ionosphere is most active
and variable
B, n cm™
» Direction-dependent within wide field-of-view £ o | e
2
The ionosphere is birefringent: Faraday rotation: A%

* as high as 20 rad/m2 during periods of high solar activity will rotate linear polarization
position angle by e = 50 degrees at 1.4 GHz

. Varies over the array, and with time as line-of-sight magnetic field and electron
density vary, violating the usual assumption of stability in position angle
calibration

X Clark’s lecture: “Low Frequency Interferometry” (Monday)
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Tropospheric Effects, T

$ (t 0y (1 0

= ={

0 ¢ 0 1

The troposphere causes polarization-independent amplitude and phase effects due to
emission/opacity and refraction, respectively

Up to 2.3m excess path length at zenith compared to vacuum
Higher noise contribution, less signal transmission: Lower SNR

Most important at n > 20 GHz where water vapor and oxygen absorb/emit
Zenith-angle-dependent (more troposphere path nearer horizon)

Clouds, weather = variability in phase and opacity; may vary across array
Water vapor radiometry (estimate phase from power measurements)

Phase transfer from low to high frequencies (delay calibration)

Crystal Brogan’s lecture: “Millimeter Interferometry and ALMA” (Thursday)

The University of New Mexico
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Parallactic Angle, P

& i & .
g e 0 3 cosy ~-siny
PRL —_ - ; PXY —_ .
0 e™* siny  COSY

Visibility phase variation due to changing orientation of sky in telescope’s field of view

» Constant for equatorial telescopes

* Varies for alt-az-mounted telescopes:

cos/sin A(t)
sin/cosd - cos/sind cos A(t)

[ =latitude, 4(¢) =hour angle,6 =declination

X(t) =arctan

» Rotates the position angle of linearly polarized radiation

e Analytically known, and its variation provides leverage for determining polarization-dependent effects

Steve Myers’ lecture: “Polarization in Interferometry” (today!)
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Linear Polarization Position Angle, X
)‘(:}L =(eiAX () ]; )?XY =(COSAX - sinAX)
0 e™ sinAy  cosAy,

Configuration of optics and electronics causes a linear polarization position angle
offset

Can be treated as an offset to the parallactic angle, P

Calibrated by registration with a strongly polarized source with known
polarization position angle (e.g., flux density calibrators)

For circular feeds, this is a phase difference between the R and L polarizations,
which is frequency-dependent (a R-L phase bandpass)

For linear feeds, this is the orientation of the dipoles in the frame of the telescope

Steve Myers’ lecture: “Polarization in Interferometry” (today!)
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Antenna Voltage Pattern, E

é%’q _ E?(l,m) 0
0 EY(l,m)

Antennas of all designs have direction-dependent gain within fi eld-of-view

« Important when region of interest on sky comparable to or larger than |/D

. Important at lower frequencies where radio source surface density is greater and wide-
field imaging techniques required

. Beam squint: Ep and Eq offset, yielding spurious polarization

. SKky rotates within field-of-view for alt-az antennas, so off-axis sources move through the
pattern

. Direction dependence of polarization leakage (D) may be included in E (off-diagonal
terms then non-zero)

Shape and efficiency of the voltage pattern may change with zenith angle: ‘gain curve’

Sanjay Bhatnagar’s lecture: “Wide Field Imaging I’ (Thursday)
Juergen Ott’s lecture: “Wide Field Imaging II” (Thursday)

‘ " ‘ New Mexico
*New Mexlco Tech S %_
7272




Polarization Leakage,

< 1 d?
d? 1
Antenna & polarizer are not ideal, so orthogonal polarizations not perfectly isolated
e Well-designed feeds have d ~ a few percent or less

e A geometric property of the optical design, so frequency-dependent

» For RL systems, total-intensity imaging affected as ~dQ, dU, so only important at high dynamic
range (Q,U,d each ~few %, typically)

* For RL systems, linear polarization imaging affected as ~dl, so almost always important

* For small arrays (no differential parallactic angle coverage), only relative D solution is possible from
standard linearized solution, so parallel-hands cannot be corrected (closure errors)

Best calibrator: Strong, point-like, observed over large range of parallactic angle (to
separate source polarization from D)

Steve Myers’ lecture: “Polarization in Interferometry” (today!)
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“Electronic” Gain, G
& P
o =8 Y
0 g
Catch-all for most amplitude and phase effects introduced by antenna electronics
and other generic effects

e Most commonly treated calibration component
* Dominates other effects for standard EVLA observations

* Includes scaling from engineering (correlation coeffi cient) to radio astronomy units (Jy), by
scaling solution amplitudes according to observations of a fl ux density calibrator

e Often also includes tropospheric and (on-axis) ionospheric effects which are typically diffi cult
to separate uniquely from the electronic response

* Excludes frequency dependent effects (see B)

Best calibrator: strong, point-like, near science target; observed often enough to
track expected variations

Also observe a flux density standard

n e Mesico [N
New Mexico Tech Tech » ' CONSORTIUM
“SCIENCE - ENGINEERING - RESEARCH - UNIVERSITY e Universil ty of New Mexico




Bandpass Response, B

e (P00
0 b'(v)

G-like component describing frequency-dependence of antenna electronics,
etc.

» Filters used to select frequency passband not square
* Optical and electronic reflections introduce ripples across band
* Often assumed time-independent, but not necessarily so

* Typically (but not necessarily) normalized

Best calibrator: strong, point-like; observed long enough to get suffi cient
per-channel SNR, and often enough to track variations

Ylva Pihlstrom’s lecture: “Calibration, Imaging, and Analysis of Data Cubes”
VVednesday)

' .
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Geometric Compensation, K s (k0
o &

Must get geometry right for Synthesis Fourier Transform relation to work in real time;
residual errors here require “Fringe-fitting”

e Antenna positions (geodesy)

e Source directions (time-dependent in topocenter!) (astrometry)

e Clocks

» Electronic pathlengths (polarization, spw differences)

* Longer baselines generally have larger relative geometry errors, especially if clocks are independent (VLBI)

e Importance scales with frequency

K is a clock- & geometry-parameterized version of G (see chapter 5, section 2.1, equation 5-3
& chapters 22,23)

e All-sky observations used to isolate geometry parameters

Adam Deller’s lecture: “Very Long Baseline Interferometry” (Thursday)

Mark Reid’s lecture “Astrometry” (Thursday)
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Non-closing Effects: M, A

Baseline-based errors which do not decompose into antenna-based components

Digital correlators designed to limit such effects to well-understood and uniform (not dependent
on baseline) scaling laws (absorbed in G)

Simple noise (additive)

Additional errors can result from averaging in time and frequency over variation in antenna-based
effects and visibilities (practical instruments are finite!)

Instrumental polarization effects in parallel hands
Correlated “noise” (e.g., RFI)
Difficult to distinguish from source structure (visibility) effects

Geodetic observers consider determination of radio source structure—a baseline-based effect—as a
required calibration if antenna positions are to be determined accurately

Diagonal 4x4 matrices, Mij multiplies, Aij adds

Rick Perley’s lecture “High Dynamic Range Imaging” (Monday)
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Decoupling Calibration Effects

Multiplicative gain (G) term will soak up many different effects; known priors
should be compensated for separately, especially when direction-dependent
differences (e.g., between calibrator and target) will limit the accuracy of
calibration transfer:

Zenith angle-dependent atmospheric opacity, refraction (T,F)
Zenith angle-dependent gain curve (E)

Antenna position errors (K)

Early calibration solves (e.g., G) are always subject to more subtle, uncorrected
effects

E.g., instrumental polarization (D), which introduces gain calibration errors and
causes apparent closure errors in parallel-hand correlations

When possible, iterate and alternate solves to decouple effects...

- CONSORTIUM
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The Full Matrix Measurement

» S maps the Stokes vector, |, to the polarization basis of the instrument, all calibration terms cast
in this basis

Suppressing the directiorr lotmn e iaaas oo adiloaad avsen)

Generally, only a subset of terms (up to 3 or 4) are considered, though highest-
dynamic range observations may require more

Solve for terms in decreasing order of dominance

(Non-trivial direction-dependent solutions involve convolutional treatment of the
visibilities, and is coupled to the imaging and deconvolution process)

m New Mexico _
New Mexico Tech Tech » ' CONSORTIUM
“SCIENCE - ENGINEERING - RESEARCH - UNIVERSITY e Universil ty of New Mexico




Solving the Measurement Equation

Formally, solving for any antenna-based visibility calibration component is
always the same general non-linear fitting problem:

corrected obs _( *) corrupted mod
Vij o Ji Jj Vij

Observed and Model visibilities are corrected/corrupted by available prior
calibration solutions

Resulting solution used as prior in subsequent solves, as necessary
Each solution is relative to priors and assumed source model
Iterate sequences, as needed ¢ generalized self-calibration

Viability of the overall calibration depends on isolation of different effects
using proper calibration observations, and appropriate solving strategies

Heuristic mnemonics....
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Calibration Heuristics — Spectral

LAN@nsity Spectral Line (B,G):
— Vobs = B G Vtrue

. Preliminary Gain solve on B-calibrator:
— Vobs = GB Vmod

. Bandpass Solve (using GB) on B-calibrator (then discard
GB):
— Vobs = B (GB Vmod)

;. Gain solve (using inverted B) on calibrators:
— (B’ Vobs) = G Vmod

+ Flux Density scaling: | Heuristic notation!
- G € Gf (enforce gain gRRSiskERSY)tion
. Correct with inverted solutions: (antenna-basedness,
— Vcor = Gf’ B’ Vobs subscripts, etc.) omitted.

6 Image’
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Calibration Heuristics -

Polaniasettry

— Vobs = B G D X P Vtrue

Preliminary Gain solve on B-calibrator:
— Vobs = GB Vmod

Bandpass (B) Solve (using GB) on B-calibrator (then
discard GB):
— Vobs = B (GB Vmod)

Gain (G) solve (using P, inv B) on calibrators:
— (B’ Vobs) = G (PYmod)

Instrumental Polarization (D) solve (using P, inverse of

G,B) on instrumental polarization calibrator:
5 (G’B’ Vobs) = D (P Vmod)
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Calibration Heuristics -
Polar'lmetry

Polarization position angle solve (using D,P, inverted G,B) on
position angle calibrator:

- (G’B’ Vobs) = X (D P Vmod)

.  Flux Density scaling:
- G © Gf (enforce gain consistency)

7. Correct with inverted solutions:
— Vcor = P’X’D’Gf’ B’ Vobs

s Image!

NeW Mexlco Tech
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New Calibration Challenges

Bandpass Calibration

» Parameterized solutions (narrow-bandwidth, high resolution regime)
o Spectrum of calibrators (wide absolute bandwidth regime)

‘Delay-aware’ gain (self-) calibration

e Troposphere and lonosphere introduce time-variable phase effects which are easily
parameterized in frequency and should be (c.f. sampling the calibration in frequency)

Frequency-dependent Instrumental Polarization
o Contribution of geometric optics is wavelength-dependent (standing waves)
Frequency-dependent voltage pattern
Wide-field voltage pattern accuracy (sidelobes)
Direction-dependent components
» E.g, Instrumental Polarization (polarized beam)

e Couples to the imaging process

Increased sensitivity: Can implied dynamic range be reached by conventional calibration and imaging
hniques?

' .
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summary

Determining calibration is as important as determining source structure
—can’t have one without the other

Data examination and editing an important part of calibration
Beware of RFl! (Please, no cell phones at the VLA site tour!)

Calibration dominated by antenna-based effects, permits efficient
separation of calibration from astronomical information (satisfies closure)

Full calibration formalism algebra-rich, but is modular
Calibration determination is a single standard fitting problem

Calibration an iterative process, improving various components in turn, as
needed

Point sources are the best calibrators

lllllllllllllllllll
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