Extragalactic Science

Jim Condon

Twelfth Synthesis Imaging Workshop 2010 June 8-15

Twelfth Synthesis Imaging Workshop

ENew Mexico CONSORTIUM

1111

10

The University of New Mexico

How can synthesis imaging help me do better science?

Twelfth Synthesis Imaging Workshop

Science benefits of synthesis imaging

- Higher angular resolution: diffraction limited by the size of the array, not by the size of each telescope
- Correlation zeros or differentiates out most unwanted effects (e.g., varying atmospheric emission, ground radiation, "I/f" noise, RFI, ...)
- Higher sensitivity is reached via longer practical integration times and lower "confusion" caused by unresolved background sources
- Higher spectral resolution: lag correlators measure frequencies very accurately with clocks, not wavelengths with rulers.
- Higher dynamic range is possible because the point-source response can be controlled and modified (e.g., selfcal, clean) and is nearly independent of mechanical pointing errors.
- Higher astrometric accuracy by using clocks instead of rulers to determine angles, and eliminating plane-parallel atmospheric refraction

Beating Confusion (GB 300-ft at I.4 GHz)

NVSS (45 arcsec beam) grayscale under GB 300-ft (12 arcmin beam)

6

contours

 $\sigma_c \sim 1 \mu Jy/beam \times$ ($\theta / 5 \operatorname{arcsec}$)² × (v / 1.4 GHz)^{-0.7}

22 GHz H₂O maser disk imaging and astrometry with the HSA = GBT + VLBA

Angular resolution: 0.0003 arcsec Spectral resolution: 1 km/s Differential astrometric precision: 0.000002 arcsec \approx 10⁻¹¹ radians

Maser rotation curve of UGC 3789

The University of New Mexico

Science costs of synthesis imaging

- Loss of "zero spacing" flux on extended sources (this is primarily a problem for nearby Galactic sources)
- Poor surface-brightness sensitivity at high angular resolution because the array area "filling factor" is low
- Computational costs may limit total bandwidth, spectral resolution, time resolution, field-of-view, ... Complexity also limits multibeaming, pulsar observations, etc.
- Quantum noise limits sensitive synthesis imaging to radio frequencies!

Resolution versus surface-brightness sensitivity

NRA

The quantum noise limit for coherent amplification

T / v = h / k = 48 K / THz e.g., ~ 150 K at λ = 100 µm ~ 15000 K at λ = 1 µm

Fig. 2: An illustration of quantum noise in a maser amplifier. This (fictitious) maser amplifier consists of a tube filled with a gas of molecules or atoms, which are pumped in a way that causes some transition with frequency ν to be inverted. A signal arriving at the input with power P_s is amplified by stimulated emission and emerges with power GP_s , where G is the power gain of the amplifier. However, due to spontaneous emission, noise photons emerge from the amplifier output even when $P_s = 0$.

What is the main limitation of <u>radio</u> astronomy?

Twelfth Synthesis Imaging Workshop

New Mexico CONSORTIUM

111

The University of New Mexico

Normal galaxies example: Mouse vs. elephant

NRAC

VLBA/HSA Image of the Starburst Nuclei in the ULIRG Arp 220

14

Jet Energy via Radio Bubbles in Hot Cluster Gas

Twelfth Synthesis Imaging Workshop

Radio Spectral Lines: Cold Gas

The EOR Quasar at z = 6.42

J1148+5251: Coeval formation of a super massive black hole and giant elliptical galaxy within 870Myr of the Big Bang

EVLA and **ALMA** together

- EVLA continuous frequency coverage from I GHz to 50 GHz
- Detect CO at almost any redshift
- Study excitation of star-forming gas in distant galaxies

Parts of external galaxies: SNe and GRBs

The University of New Mexico

New Mexico

CONSORTI

Take-away message: Synthesis imaging is the secret weapon of radio astronomy

Twelfth Synthesis Imaging Workshop

The end ...

Not!