Low Frequency Interferometry

Tracy Clarke (Naval Research Laboratory)

Twelfth Synthesis Imaging Workshop 2010 June 8-15

What is Low Frequency?

Wikipedia: 'Low frequency or lowfreq or LF refers to radio frequencies-(RF) in the range of 30 kHz – 300 kHz.'

Not the definition normally used by radio astronomers.

> Low freq radio astronomy = HF (3 MHz - 30 MHz), VHF (30 MHz - 300 MHz) and UHF (300 MHz - 3 GHz)

Ground-based instruments only reach to ~10 MHz due to ionosphere

CLASS	FREQUENCY	WAVELENGTH	ENERGY	
\vee	300 EHz	1 pm	1.24 MeV	
' нх —	30 EHz	10 pm	124 keV	
	3 EHz	100 pm	12.4 keV	
SX —	300 PHz	1 nm	1.24 keV	
	30 PHz	10 nm	124 eV	
NUV	3 PHz	100 nm	12.4 eV	
	300 THz	1µm	1.24 eV	
	30 THz	10 µm	124 meV	
	3 THz	100 µm	12.4 meV	
	300 GHz	1 mm	1.24 meV	
CUL	30 GHz	1 cm	124 µeV	
UHE	3 GHz	1 dm	12.4 µeV	
VHE	300 MHz	1 m	1.24 µeV	
HE	30 MHz	10 m	124 neV	
	3 MHz	100 m	12.4 neV	
	300 kHz	1 km	1.24 neV	
	30 kHz	10 km	124 peV	
	3 kHz	100 km	12.4 peV	
	300 Hz	1 Mm	1.24 peV	
	30 Hz	10 Mm	124 feV	
	3 Hz	100 Mm	12.4 feV	
		The University of New Mexico	<u>New Mexico</u> CONSORTIUM	

Low Frequencies: Origin of Radio Astronomy

 Radio astronomy was born in the 1930's with Karl Jansky's work at 20.5 MHz (14.5 m) at Bell labs

Reber continued work at 160 MHz (1.9 m) in his back yard

Reber's Radio Sky in 1944

Emission Mechanisms at Low Frequency

Synchrotron Emission: (Lang Talk)

- > Best observed at m \lfloor ($\langle < 1 \text{ GHz} \rangle$)
- Relativistic electrons spiraling around magnetic field lines
- Depends on the energy of the electron: and magnetic field strength
- Emission is polarized
- Can be either coherent or incoherent
- <u>Thermal Emission: (Brogan Talk)</u> (Free-Free, Bremsstrahlung):
- > Best observed at cm \lfloor ($\rbrace > 1$ GHz)
- Deflection of free electrons by ions
- Depends on temperature of the gas
- \blacktriangleright Can be emission or absorption at low $\{$

Thompson, Moran, & Swenson

Recombination Lines

Radio Recombination Lines: (Lang Talk)

High quantum number n state (n>100 for low frequencies), formed in transition region between fully ionized regions and neutral gas (PDRs)

Nomenclature: *n*+∆*n*→*n*, ∆*n*=1 is *nα*, ∆*n*=2 is *nβ*, *v*₀□∆*n*/*n*³ (e.g. C441α)

Largely observed toward the Galactic Plane and discrete source. Detected in absorption below ~150 MHz.

Diagnostics of the physical conditions of the poorly probed cold ISM, e.g. temperature, density, level of ionization, abundance ratios

Frequency variable signal could adversely impact sensitive Dark Ages and Epoch of Reionization observations.

Stepkin et al. (2007)

Fundamental Limitation

Why 'Abandon' Low Frequencies?

Confusion limit reached quickly with only short baselines

- Imaging large fields of view posed enormous computing problem
- Removal of radio frequency interference (RFI) was very difficult

Overcoming the Resolution Problem

Currently in a transition of moving to high resolution at low frequencies

Why has this taken nearly 50 years?

Software/Computing:

- Ionospheric decorrelation on baselines > 5 km is overcome by software advances of Self-Calibration in the 1980's
- Wide-field imaging only recently (sort of) possible
- RFI excision development
- Data transmission from long distances became feasible using fiber-optic transmission lines

Low Frequency Arrays

Recent advances in ionospheric calibration, widefield imaging, and RFI excision have led to a new focus on low frequency arrays

		Location	<pre>{ range (MHz) 72.9.220</pre>	Resolution (arcsec)	FoV (arcmin)	Sensitivity (mJy)	
Dishes	GMRT WSRT	IN NL	151-610 115-615	20-5 160-30	186-43 480-84	I.5-0.02 5.0-0.15	×
Dipoles	 LOFAR-Low LOFAR-Hi LVVA	NL NL NM	0-90 0-250 0-88	40-8 5-3 16-1.8	1089-220 272-136 16-1.6) 0- 2 0.4 -0.46 .0	

* 330 MHz system not compatible with EVLA, 74 MHz system to be evaluated soon – New receiver system under development

EVLA Low-Band Receiver Evolution of Low-Frequency Capabilities on the VLA

- P-Band (330 MHz) System Installed on the VLA
- 1984 Pearson and Readhead introduce the self-calibration technique
- 1991 Single 4-Band (74 MHz) Antenna Installed on the VLA
- 1994 Eight 4-Band VLA Antennas
- > 1998 Full 4-Band VLA All 27 Antennas ($\Theta \sim 25^{\circ}$)
- > 2002 Pie Town Link at 74 MHz ($\Theta \sim 8$ ")
- > 2008 P-Band system incompatible with EVLA electronics

Twelfth Synthesis Imaging Workshop

EVLA Low-Band Receiver Design Goals for New Low-Frequency Receiver

- Restore legacy low-frequency (LF) capabilities to EVLA
- Improve sensitivity with lower receiver noise temperature
 - Marian Pospiezalski of NRAO CDL building P band amplifier
 - 4 band and spare channel amplifiers are commercial devices
- Increase receiver bandwidth to enable future broadband feeds
- Consolidation of LF capabilities into a single receiver subsystem
- Provide an easily extensible platform for future LF feeds
 - <u>Two completely independent "spare" channels provide</u>
 - ✓ LNA –Ultra-Low Noise front end with high-dynamic range
 - ✓ Noise Calibration
 - \checkmark Filter position to define a future frequency band
 - Upgrades to EVLA IF structure could enable frequency coverage from 50 MHz to 1 GHz

EVLA Low-Band Receiver Increased Bandwidth

> 4-band: Increased from 1.5 MHz to ~16 MHz (66 to 82 MHz)

Limited on low end by present EVLA IF structure

New

 \succ Limited on high end by start of FM band (87.5 MHz)

➢ P-band: Bandwidth increased from 40 MHz to 240 MHz (230 to 470 MHz)

New Mexico

EVLA Low-Band Receiver Consolidated LF Platform to Enable Feed Development

Twelfth Synthesis Imaging Workshop

CIENCE · ENGINEERING · RESEARCH · UNIVERSI

The University of New Mexico

Low Frequency Science

 \succ Key science drivers at low frequencies:

- Dark Ages (spin decoupling)
- Epoch of Reionization (highly redshifted 21 cm lines)
- Early Structure Formation (high z RG)
- Large Scale Structure evolution (diffuse emission)
- Evolution of Dark Matter & Dark Energy (Clusters)
- Wide Field (up to all-sky) mapping
- Large Surveys
- Transient Searches (including extrasolar planets)
- Galaxy Evolution (distant starburst galaxies)
- Interstellar Medium (CR, HII regions, SNR, pulsars)
- Solar Burst Studies
- Ionospheric Studies
- Ultra High Energy Cosmic Ray Airshowers
- Serendipity (exploration of the unknown)

Epoch of Reionization

OCDM

Structure Formation

Galaxy clusters form through mergers and are identified by large regions of diffuse synchrotron emission (halos and relics)

Important for study of plasma microphysics, dark matter and dark energy

Evolution of AGN Activity/Feedback

Galactic Supernova Remnant Census

Census: expect over 1000 SNR and know of ~230

Transients: Galactic Center

Filaments trace magnetic field lines and particle distribution
 Transients: sensitive, wide fields at low frequencies provide powerful opportunity to search for new transient sources
 Candidate coherent emission transient discovered near Galactic center

Extrasolar Planets

Jupiter's coherent cyclotron emission: complex interaction of Jupiter's magnetosphere with lo torus

POSSIBLE TO DETECT BURST EMISSION FROM DISTANT "JUPITERS"

VLA Low Frequency Sky Survey:VLSS

Survey Parameters: $\{=74 \text{ MHz}, \text{ } \text{MHz}, \text{ } \text{MH$

Deepest & largest LF survey
 N ~ 70 000 sources in ~ 95% of sky > -30°
 Statistically useful samples of rare sources
 => fast pulsars, distant radio galaxies, cluster radio halos and relics, unbiased view of parent populations for unification models

The University of New Mexi

- Important calibration grid for EVLA, GMRT, & future LF Cohen et al. (2007) instruments
- Data online at NED & <u>http://lwa.nrl.navy.mil/VLSS</u>

Low Frequency In Practice: <u>Not Easy!</u>

Phase coherence through ionosphere

Corruption of coherence of phase on longer baselines

- Finite Isoplanatic Patch Problem:
 - Calibration changes as a function of position
- Bandwidth smearing:
 - Distortion of sources with distance from phase center
- Radio Frequency Interference:
 - Severe at low frequencies
- Large Fields of View:
 - Non-coplanar array (u,v, & w)
 - Large number of sources requiring deconvolution

Not Easy but certainly possible!

Ionospheric Effects

Wedge Effects: Faraday rotation, refraction, absorption below ~ 5 MHz (atmospheric cutoff)

Wave and Turbulence Effects: Rapid phase winding, differential refraction, source distortion, scintillations

<u>Wedge</u>: characterized by TEC = +n_edl ~ 10¹⁷ m⁻² Extra path length adds extra phase ⊗L $\langle \lfloor^2 \Box$ TEC ⊗) ~ ⊗L∆L ~ L * TEC

<u>Waves</u>: tiny (<1%) fluctuations superimposed on the wedge

The University of New Mexi-

The wedge introduces thousands of turns of phase at 74 MHz

Interferometers are particularly sensitive to difference in phase (wave/turbulence component)

lonosphere

Correlation preserved Correlation destroyed

Antenna Phase as a Function of Time

A wide range of phenomena were observed over the 12-hour observation

Often daytime
 (but not dawn)
 has very good
 conditions

Ionospheric Refraction & Distortion

Ionospheric Differential Refraction

Field-Based Calibration

- Rapid images of bright sources to compare to known positions
- Fit Zernike polynomial phase delay screen for each time interval.
- Apply time variable phase delay screen to produce corrected image.

Bandwidth Smearing

> Averaging visibilities over finite BW results in chromatic aberration worsens with distance from the phase center => radial smearing $(\otimes \langle A \rangle)x(A_{synth}) \sim 2 => I_0/I = 0.5 =>$ worse at higher resolutions

 \geq Rule of thumb for full primary beam targeted imaging in A config. with less than 10% degradation:

74 MHz channel width < 0.06 MHz 330 MHz channel width < 0.3 MHz 1420 MHz channel width < 1.5 MHz

Radio Frequency Interference: RFI

Natural & man-generated RFI are a nuisance Getting "better" at low freq., relative BW for commercial use is low

At VLA: many different signatures seen at 74 and 330 MHz signatures: narrowband, wideband, time varying, 'wandering' Solar effects – unpredictable Quiet sun is a benign 2000 Jy disk at 74 MHz Solar bursts, geomagnetic storms are disruptive => 10⁹ Jy! Powerful Solar bursts can occur even at Solar minimum! Can be wideband (C & D configurations), mostly narrowband

Best to deal with RFI at highest spectral resolution before averaging for imaging.

Short baseline

RFI Examples → Long baseline

RFI environment worse on short baselines

Several 'types': narrow band, wandering, wideband,

Wideband interference hard for some automated routines

Example using AIPS tasks FLGIT, FLAGR, RFI, <u>NEW</u>: UVRFI

(Pen Talk)

INKA

RFI Excision vs Cancellation

200 Sime index

Time

300

400

Helmboldt et al. (in prep.)

Many algorithms handle RFI through excision

• OK if you have little RFI or lots of data

Ideally we want to remove RFI and leave the data

 Current development aimed at cancellation
 Fringe stopping works well for constant RFI but not moving or time variable

Full removal will likely require algorithms using multiple techniques

RAO

100

73.4

The University of New Mexico

Large Fields of View: Imaging

A array requires 10X more: ~ 3000 facets ~10⁸ pixels

Full Field vs Targeted Imaging

2D faceted imaging of entire FoV is very computationally expensive

Fly's eye of field center and then targeted facets on outlier is less demanding BUT potential loss of interesting science

Large Fields of View: Calibration

Summary

- Recent progress in wide-field imaging, RFI excision/cancellation, and ionospheric calibration are opening the low frequency spectrum to arcsecond resolution and mJy sensitivities stay tuned for latest developments
- Advances will lead improved scientific capabilities for studies from Dark Ages to the ionosphere
- Next generation of low frequency instruments is being built while current instruments (such as the EVLA) are being upgraded
 - NRAO plans testing of the 4 band system in the upcoming C configuration and hopes to re-deploy it in B/BnA/A configs
 - Development of new P band system anticipates having new receivers ready by Nov. 2011
 - Initially observations will likely continue to use the old feeds but ideally new broadband feeds will be developed

