Wide-Field Imaging: I

Twelfth Synthesis Imaging Workshop 2010 June 8-15

S. Bhatnagar NRAO, Socorro

Wide-field imaging

- What do we mean by wide-field imaging
 - W-Term: 2D Fourier transform approximation breaks down
 - Full-beam imaging: Antenna Primary Beam (PB) effects cannot be ignored
 - Mosaicking: Imaging fields with emission larger than the antenna Field-of-View (FoV)

The W-Term

• 2D approximation of the measurement equation (ME) breaks down ("The W-term problem").

 Imaging dynamic range throughout the image is limited by deconvolution errors due to the sources away from the (<u>phase</u>) center.

The University of New Mexico

Primary Beam Effects

• Antenna Primary Beam (PB) pattern cannot be approximated by unity ("Full Beam Imaging").

40 30 20 10 0 -10 -20 -30 -40 Relative J2000 Right Ascension (arcmin)

 Imaging dynamic range throughout the image is limited by the deconvolution errors due to the sources in the half-power points and the side lobes.

Mosaicking (see later lectures)

- Imaging emission wider than the Field-of-View (FoV) ("Mosaicking")
- Dominant sources of errors
 - Antenna Pointing
 - PB effects: rotation, multiple types of antenna in the array (ALMA)
 - Deconvolution errors for extended emission

Theory re-cap: Measurement Eq.

$$V^{Obs}(u_{ij}, v_{ij}; v) = \int I(l, m, v) e^{\iota[u_{ij}l + v_{ij}m]} dl dm$$

- van-Cittert Zernike Theorem: Coherence function is a 2D Fourier Transform of the Sky Brightness distribution
- Full ME $V_{ij}^{Obs}(v) = J_{ij}(v,t) \int J_{ij}^{S}(s,v,t) I(s,v) e^{\iota s.b_{ij}} ds$ Skv Geometry Data Corruptions $s = (l, m, n) = (l, m, \sqrt{1 - l^2 - m^2 - 1})$: Direction cosins $\boldsymbol{b}_{ii} = (u_i - u_i, v_i - v_i, w_i - w_i) = (u_{ii}, v_{ii}, w_{ii})$: The Baseline vector New Mexico New Mexico Tech The University of New Mexic

Theory re-cap: Measurement Eq.

$$V_{ij}^{Obs}(v) = J_{ij}(v,t) \int J_{ij}^{S}(s,v,t) I(s,v) e^{\iota s.b_{ij}} ds$$

J_{ij}=J_i⊗J^{*}_j Direction independent effects (e.g. Complex Gains *a la* SelfCal)
Constant across the field of view

 $J_{ij}^{s} = J_{i}^{s} \otimes J_{j}^{s^{*}}$ Direction dependent effects (e.g. Antenna PB, ionosphere,...)

• Time variable direction dependent gains due to PB rotation for Az-El antennas

• Geometry: W-Term
$$e^{\iota s.b_{ij}} = e^{\iota [u l + v m + w(\sqrt{1 - l^2 - m^2} - 1)]}$$

The W-Term: Theory

Ignore J_{ij} (nominally calibrated data) and J^s_{ij} (ignore effects of PB)

$$V_{ij}^{Obs}(v) = \int I(s,v) e^{\iota \left[u_{ij}l + v_{ij}m + w_{ij}\left(\sqrt{1 - l^2 - m^2} - 1\right)\right]} ds$$

- FoV is small:
- Array is co-planar

$$l^{2} + m^{2} \ll 1$$
$$w \ll \left(\sqrt{u_{max}^{2} + v_{max}^{2}}\right)$$

- vCZ: 2D Fourier transform works
- When FoV **or** w_{ij} is "large", data and the image are not related by a simple 2D Fourier transform relationship.

The W-Term: Geometric interpretation

- Phase of the visibilities for direction heta
 - For the interferometer in a plane: $\phi = 2\pi u l$
 - For the interferometer not in a plane: $\phi = 2\pi \left[u l + w(n-1) \right]$
- 2D approximation valid only when: (1) w is small compared to u, or (2) $\theta\!\approx\!0$

The W-Term: Optics interpretation

- Physically we measure... $V_{12}^{o} = \langle E_{1}^{'}(u, v, w \neq 0) E_{2}^{*}(0,0,0) \rangle$
- ...and interpret as if it were $V_{12} = \langle E_1(u, v, w=0) E_2^*(0,0,0) \rangle$
 - $E_{1} \text{ is equal to } E_{1} \text{ propagated using Fresnel} \\ \text{diffraction theory} \\ V_{12}^{o} = V_{12}(u, v, w = 0) * G(u, v, w), where \\ G(u, v, w) = Fresnel Propaga \neq dFT \left[e^{2\pi \iota w \sqrt{1 l^{2} m^{2}}} \right] \\ V_{12}^{o} = \int I(l, m) e^{2\pi \iota \left[u_{12}l + v_{12}m \right]} e^{2\pi \iota w_{12} \sqrt{1 l^{2} m^{2}} 1} dl dm$

- A single interferometer is sensitive to *multiple* Fourier component
- Concept of redundant baselines is more restrictive than is usually thought!

•

Example: No W-Term Correction

<u>New Mexico</u>

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

NRAC

Example: After W-Term Correction

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

NRAC

Solutions: 3D Imaging

- Do a 3D inversion of the ME to make a 3D "Image" $F(l, m, n) = \int V(u, v, w) e^{i \left[u_{ij} l + v_{ij} m + w_{ij} n \right]} du dv dw$
- Relate F(I,m,n) to the physical image as

$$I(l,m) = \frac{F(l,m,n)}{\sqrt{1-l^2-m^2}} \delta(l^2 + m^2 + n^2 - 1)$$

- Interpretation
 - Physical emission I(I,m) exists along the surface of a unit sphere inside the 3D-Image F(I,m,n)
- Resulting algorithm is not efficient
- Not used very often (read "never used" :-))

Solutions: Faceted Imaging

- Interpret *I(I,m)* as emission on the surface of Celestial Sphere of unit radius: $l^2 + m^2 + n^2 = 1$
 - Approximate the celestial sphere by a set of tangent planes • a.k.a. "facets"
 - Use 2D imaging on each facet •
 - Re-project the facet-images to a single 2D plane •

Number of facets required

$$N_{Poly} = \theta_f^2 \frac{B_{max}}{\lambda}$$

Solutions: Faceted Imaging

- Re-phase the entire data towards the direction of each facet center (tangent point)
- Since l²+m² is small (by construction), make a 2D image for each facet
 - What happens when emission extends over multiple facets?
- Re-project the facet images to a single plane

$$\binom{l}{m} \approx \mathbf{R}_{2} \binom{l'}{m'} + \binom{l_{p}}{m_{p}}$$

- Intuitively easy to understand
- Emission extending over multiple facets is an issue
- Multiple images
- Available in CASA and AIPS

Solutions: UV plane equivalent

• Since the facet-images are related to the single-plane image by a linear co-ordinate transformation, there must exist a equivalent operation in the visibility plane.

$$I(Cl) \rightarrow |det(C)|^{-1}V(C^{-1^{T}}u)$$

where $\boldsymbol{\textit{C}}$ is the image domain co-ordinate transform

I and *u* are the image and visibility plane co-ordinates

- Projection error: $\epsilon = \sin(\theta_1)(1 \cos(\theta_2)) \approx \frac{1}{2} \theta_1 \theta_2^2$
 - Error same as in image plane faceting!
 - Produces a single image (no edge effects)
 - Global deconvolution possible (extended emission)
 - Use of advanced algorithms for extended emission possible

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

Available in CASA and possibly in AIPS

Solutions: W-Projection

The W-Projection Algorithm

- Optics interpretation
 - $V^{o}(u, v, w) = V(u, v, w = 0) * G(u, v, w)$
- Algorithm
 - Model prediction (major cycle) [Residual computation]
 - Perform a 2D FFT of the model image (appropriately tapered)⁵⁰ UU (this is V(u, v, w=0))
 - Evaluate the above convolution equation as part of Gridding to get $V^o(u, v, w)$
 - Compute the Dirty Image (minor cycle) [Deconvolution]
 - Use $G^{T}(u, v, w)$ on each $V^{o}(u, v, w)$ during gridding to evaluate V(u, v)
 - Perform a 2D FFT⁻¹ of V(u, v)

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

FT of phase screen for W plane 32

W-Projection: Performance

- Scaling laws:
 - Facet imaging: $(N_{Facets}^2 N_{GCF}^2) N_{vis}$
 - W-Projection: $(N_{WPlanes}^2 + N_{GCF}^2)N_{vis}$
 - Ratio:

 $\approx N_{GCF}^2$ for large number of facets/WP lanes

W-Projection: Performance

- WProjection about 10x faster than facet based imaging
- Algorithm complexity is significantly lower
 - This is more important than is realized!
- Users practically see no difference between "wide field" imaging and normal imaging
- Fits in the general mathematical framework of advanced imaging techniques
 - Works naturally with any minor cycle algorithm (Hogobm-, Clark-, CS-, MS-, Asp-Clean, etc.)
 - Naturally integrates with full-beam imaging/calibration
 - Naturally includes multi-field imaging
- <u>May not be useful for full-sky imaging telescopes with long baselines</u>
 - But can be combined with faceted imaging (implemented in CASA)

Examples: 74MHz, before correction

Courtesy: K. Golap

New Mexico

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

NRAC

Examples: WProjection imaging

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

NRAC

A small digression

• Linear optimization view of deconvolution

 $V^{o} = A I^{o} + N$ $V^{M} = A I^{M}$

- **N** is Gaussian Random Variable in the data domain
- χ^2 Is the optimal estimator. Deconvolution is then equivalent to minimize: $\chi^2 = |V^o - AI^M|^2$ where $I^M = \sum_k P_k$; P_k is the Pixel Model

$$\frac{\partial \chi^2}{\partial \operatorname{Pixel Model}} \equiv \operatorname{Dirty Image}$$

$$I_i^M = I_{i-1}^M + \alpha \Delta X^2$$

• Various algorithms differ in (1) parametrization of P_{k} , (2) types of constraints, and (3) how the constraints are applied

A small digression: Projection methods

• ME entirely in the visibility domain:

 $V_{ij}^{Obs} = E_{ij} [V^o]$

where E_{ii} represents a direction dependent (DD) effect

- Construct a **K**_{ii} which models the desired DD effect
- If $\mathbf{K}_{ij}^{T} \mathbf{E}_{ij} \sim \mathbf{1}$ (Unitary Operator), compute update direction (Dirty Image) as

 $FT\left[\mathbf{K}_{ij}^{T}\mathbf{V}_{ij}^{Res}\right] \rightarrow I^{Dirty} = I^{\circ} * PSF$

Deconvolution: Minor Cycle

• Accurate residual computation (Chisq) as

 $\boldsymbol{V}_{ij}^{Res} = \boldsymbol{K}_{ij} F T^{-1} [\boldsymbol{I}^{M}] - \boldsymbol{V}_{ij}^{Obs}$

Deconvolution: Major Cycle

• Iterations will converge – if the operator is approximately unitary

Image domain vs. data domain

- Projection methods utilize the available data optimally
 - Non-linear operations (e.g. deconvolution) are done on images constructed using the entire data
 - Errors are corrected using parametrized models
 - Global corrections rather than local correction
- Since DD effects are typically also time varying, image domain based correction are non-optimal
 - Necessarily require data partitioning
 - Signal-to-noise available to solvers corresponds to a fraction of the total data
 - Require many more DoF: At least one per direction of interest
 - Local corrections ==> Could lead to "Closure errors"

Examples: 2D Imaging

Examples: Facet Imaging

Examples: WProjection Imaging

Full beam imaging

 Now ignore J_{ij} (i.e., using calibrated data). Ignore also the w-term for the moment:

$$V_{ij}^{Obs}(v) = \int J_{ij}^{S}(s, v, t) I(s, v) e^{\iota \left(u_{ij}l + v_{ij}m\right)} ds$$

- Some observations:
 - J_{ij}^{δ} is direction dependent: complex gain potentially different for different direction in the sky

- $J_{ij}^{s} = J_{i}^{s} \otimes J_{j}^{s^{*}}$: This is true for most instrumental, atmospheric /ionospheric corruptions (all effects that obey "closure relationship")
- When $J_i^s = J_j^s$ and stationary in time (e.g. PB of ideal, identical antennas), its effects can be corrected in the image domain

$$\frac{I^{Obs}}{J^{s}(s,v)} = I(s,v)$$

More observations...

• J^s_i are in general complex (complex Primary Beams!)

Frequency dependence

- ... *J^s*, vary with frequency...
 - To the first order, PBs scale with frequency

Polarization dependence

• ... J_{i}^{s} vary with polarization

Error propagation

Examples: Stokes-I and -V imaging

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

Examples: Stokes-V

Theory: Full-beam imaging

• Re-cap – the simplified ME

$$V_{ij}^{Obs}(v) = \int J_{ij}^{S}(s, v, t) \quad I(s, v) \quad e^{\iota \left(u_{ij}l + v_{ij}m\right)} \quad ds \qquad \qquad J_{ij}^{S} = J_{i}^{S} \otimes J_{j}^{S^{*}}$$

• Re-write it as

$$\boldsymbol{V_{ij}^{Obs}} = \boldsymbol{E_{ij}} * \left[\boldsymbol{V} \right] = \boldsymbol{E_{i}^{*}} * \boldsymbol{E_{j}} * \left[\boldsymbol{V^{o}} \right]$$

 E_i : Antenna Aperture Illumination Patter $E_i = FT \left[J_i^s \right]$

 V^{obs} is equal to true visibilities convolved with the auto-correlation of antenna Aperture Illumination pattern.

- If there exists a function K_{ij} such that $K^{T}_{ij} * E_{ij} \sim Delta$ Function
 - Gridding: $V_{ij}^{G} = K_{ij}^{T} * V_{ij}^{Obs} = K_{ij}^{T} * E_{ij} * [V^{o}] \approx [V^{o}]_{ij}$
 - Imaging: $FFT\left[V^{o}\right] \rightarrow I^{d}$
 - Prediction: $V_{ij}^{M} = K_{ij} * FFT \left[I^{M} \right]$

Solution: A-Projection algorithm

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

New Mexico Tech

NRA

Solution: A-Projection algorithm

Stokes-I: Before correction

Stokes-I: After correction

Stokes-V: Before correction

Stokes-V: After correction

Examples: EVLA Imaging

Examples: Time varying PBs

Simulations for LWA @50MHz (Masaya Kuniyoshi (LWA/NRAO))

12th Synthesis Imaging Workshop, June 2010: S. Bhatnagar

Model for EVLA PB at L-Band

References:

Papers

Review

Pages Web

- Books Interferometry and Synthesis in Radio Astronomy, 2nd Ed.: Thompson, Moran and Swenson
 - Synthesis Imaging in Radio Astronomy: II The "White Book"
 - W-Projection: IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 2008
 - A-Projection: A&A, 487, 419, 2008 (arXiv:0808.0834)
 - Scale sensitive deconvolution of astronomical images: A&A, 426, 747, 2004 (astro-ph/0407225)
 - MS-Clean: IEEE Journal of Selected Topics in Signal Processing, Vol.2, No.5, 2008
 - Advances in Calibration and Imaging in Radio Interferometry: Proc. IEEE, Vol. 97, No. 8, 2008
- Articles Calibration and Imaging challenges at low frequencies: ASP Conf. Series, Vol. 407, 2009
 - High Fidelity Imaging of Moderately Resolved Source; PhD Thesis, Briggs, NMT, 1995
- Thesis Parameterized Deconvolution for Wide-band Radio Synthesis Imaging; PhD Thesis, Rao Venkata; NMT, 2010
 - http://www.aoc.nrao.edu/~sbhatnag
 - Home pages of SKA Calibration and Imaging Workshops (CALIM), 2005, 2006, 2008, 2009

Home Pages of: EVLA, ALMA, ATA, LOFAR, ASKAP, SKA, MeerKat

