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●      -  What do we mean by wide field imaging

● W-Term: 2D Fourier transform approximation breaks 
down

● Full-beam imaging: Antenna Primary Beam (PB) 
effects cannot be ignored

● Mosaicking: Imaging fields with emission larger than 
the antenna Field-of-View (FoV)

Wide-field imaging
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● 2D approximation of the measurement equation (ME) 
breaks down (“The W-term problem”).

● Imaging dynamic range throughout the image is limited 
by deconvolution errors due to the sources away from 
the (phase) center.

The W-Term
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● Antenna Primary Beam (PB) pattern cannot be 
approximated by unity (“Full Beam Imaging”).

● Imaging dynamic range throughout the image is limited 
by the deconvolution errors due to the sources in the 
half-power points and the side lobes.

Primary Beam Effects
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● Imaging emission wider than the Field-of-View (FoV) 
(“Mosaicking”)

● Dominant sources of errors
● Antenna Pointing 

● PB effects: rotation, multiple types of antenna in the array (ALMA)

● Deconvolution errors for extended emission

Mosaicking (see later lectures)

Pointing centers
(usually also the 
pointing phase 
center)
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● van-Cittert Zernike Theorem: Coherence function is a 2D 
Fourier Transform of the Sky Brightness distribution

● Full ME

Theory re-cap: Measurement Eq.
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●

Constant across the field of view

● Time variable direction dependent gains

due to PB rotation for Az-El antennas

● Geometry: W-Term

Theory re-cap: Measurement Eq.

V ij
Obs
 = J ij   , t ∫ J ij

S
 s ,  , t  I  s ,  e s.b ij d s

J ij=J i⊗ J j
∗

  

J ij
S
=J i

S
⊗ J j

S∗

Direction independent effects (e.g. Complex Gains a la SelfCal)

Direction dependent effects (e.g. Antenna PB, ionosphere,...)

e s.bij= e [u l v mw 1− l2−m2−1 ]
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● Ignore J
ij
 (nominally calibrated data) and Js

ij
 (ignore effects of 

PB)

● FoV is small:  

● Array is co-planar 

● vCZ: 2D Fourier transform works

● When FoV or w
ij
 is “large”, data and the image are not 

related by a simple 2D Fourier transform relationship.

The W-Term: Theory

V ij
Obs
 =∫ I  s ,  e

 [ uij l v ij mw ij  1− l 2
−m2

−1 ] d s

w≪umax
2
vmax

2 
l 2
m2

≪1
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● Phase of the visibilities for direction

● For the interferometer in a plane:

● For the interferometer not in a plane:  

● 2D approximation valid only when: (1) w is small compared 
to u, or (2) 

The W-Term: Geometric interpretation

X

u



X

u
w





=2u l
=2 [u lwn−1 ]

l=sin 
n=cos 
l=sin 

≈0
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● Physically we measure...

● ...and interpret as if it were 

● E
1
 is equal to E'

1
 propagated  using Fresnel 

diffraction theory

The W-Term: Optics interpretation

V 12
o
=〈E1

'
u , v , w≠0E2

∗
0,0,0 〉

V 12=〈E1u , v , w=0E2
∗0,0,0 〉

V 12
o
=∫ I  l , me2 [u12 lv12 m ]e2w12 1−l2

−m2
−1 dl dm

V 12
o
=V 12u , v , w=0∗G u , v ,w ,where

Gu , v ,w=Fresnel P ropagater=FT [e2w 1− l2−m2 ]

 
● A single interferometer is sensitive to multiple Fourier component

●  Concept of redundant baselines is more restrictive than is usually thought!
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Example: No W-Term Correction

● W-term is a phase
error

● Sources move in 
the image in a 
systematic way

● Hermitian but
a “dispersive” effect
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Example: After W-Term Correction
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● Do a 3D inversion of the ME to make a 3D “Image”

● Relate F(l,m,n) to the physical image as

● Interpretation

● Physical emission I(l,m) exists along the surface of a unit 
sphere inside the 3D-Image F(l,m,n)

● Resulting algorithm is not efficient

● Not used very often (read “never used” :-))

Solutions: 3D Imaging

F l ,m ,n=∫V u , v , w e
 [ u ij l v ij mw ij n ] du dv dw

I l ,m= F  l , m ,n 

1−l 2
−m2

l 2
m 2

n2
−1
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● Interpret I(l,m) as emission on the surface of Celestial Sphere of unit 
radius:  l2+m2+n2=1

● Approximate the celestial sphere by a set of tangent planes – 
a.k.a. “facets”

● Use 2D imaging on each facet

● Re-project the facet-images to a single 2D plane

● Number of facets required

Solutions: Faceted Imaging

F l ,m , n=∫V u , v , w e
 [ u ij l v ij mw ij n ] dldmdn N Poly= f

2
Bmax



=Bmax


D2
D≡Antenna diameter ; f=Full Antenna Beam
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● Re-phase the entire data towards the direction of each facet center 
(tangent point)

● Since l2+m2 is small (by construction), make a 2D image for each 
facet 

● What happens when emission extends over multiple facets?

● Re-project the facet images to a single plane

● Intuitively easy to understand

● Emission extending over multiple facets is

an issue 

● Multiple images

● Available in CASA and AIPS

Solutions: Faceted Imaging

● Re-phase the data for each facet
● Make a 2D image (since l2+m2 ~ 0)
● Re-project 2D facet images

● Multiple images and facet edge effects are a problem

 l
m≈R2  l '

m '  l p

m
p
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● Since the facet-images are related to the single-plane image by a 
linear co-ordinate transformation, there must exist a equivalent 
operation in the visibility plane.  

          where C is the image domain co-ordinate transform

                     l and u are the image and visibility plane co-ordinates

● Projection error:

● Error same as in image plane faceting!

● Produces a single image (no edge effects)

● Global deconvolution possible (extended emission)

● Use of advanced algorithms for

extended emission possible

● Region definition as in the usual case

Solutions: UV plane equivalent

I C l ∣det C ∣−1V C−1T

u

=sin11−cos2≈
1
2
12

2

Available in CASA and possibly in AIPS
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● Optics interpretation

●

●

● Size of the Fresnel Zone: 

● If       is unitary (or even approximately so)

GT and G can be used in the forward and inverse

transforms to produce distortion free images

Solutions: W-Projection

V 12
o
=∫ I  l , me2 [u12 lv12 m ]e2w12 1−l2

−m2
−1 dl dm

V o
u , v , w=V u , v , w=0 ∗G u , v ,w ,where

Gu , v ,w=FT [e2w 1− l2−m2 ]

GT G

r f


≈w
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● Optics interpretation

●

● Algorithm

● Model prediction (major cycle) [Residual computation]

● Perform a 2D FFT of the model image (appropriately tapered)

(this is                   ) 

● Evaluate the above convolution equation as part of Gridding to get 

● Compute the Dirty Image (minor cycle) [Deconvolution]

● Use                  on each                 during gridding to evaluate

● Perform a 2D FFT-1 of      

The W-Projection Algorithm

V o
u , v , w=V u , v ,w=0 ∗G u , v ,w

V u , v ,w=0 
V o
u , v , w

GT
u , v , w V o

u , v , w V u , v
V u , v
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● Scaling laws:

● Facet imaging:

● W-Projection:

● Ratio:  

W-Projection: Performance

N Facets
2 NGCF

2
N vis

NWPlanes
2

N GCF
2

N vis

≈NGCF
2 for large number of facets/WPlanes

●In practice 
WProjection 
algorithm is 
about 10x faster
 
●Size of G(u,v,w) 
increases with W
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● WProjection about 10x faster than facet based imaging

● Algorithm complexity is significantly lower

● This is more important than is realized!

● Users practically see no difference between “wide field” imaging and 
normal imaging

● Fits in the general mathematical framework of advanced imaging 
techniques

● Works naturally with any minor cycle algorithm (Hogobm-, Clark-, CS-, MS-, Asp-
Clean, etc.)

● Naturally integrates with full-beam imaging/calibration

● Naturally includes multi-field imaging

● May not be useful for full-sky imaging telescopes with long baselines

● But can be combined with faceted imaging (implemented in CASA)

W-Projection: Performance
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Examples: 74MHz, before correction

Courtesy: 
K. Golap 
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Examples: WProjection imaging

Courtesy: 
K. Golap 

Sub-image of
an “outlier” field 
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● Linear optimization view of deconvolution

● N is Gaussian Random Variable – in the data domain

●     Is the optimal estimator.  Deconvolution is then equivalent to

           minimize: 

● Various algorithms differ in (1) parametrization of P
k
, (2) types 

of constraints, and (3) how the constraints are applied

A small digression

V o=AI oN

VM
=A IM

2


2
=∣V o

−AIM∣
2

where IM=∑k
Pk ; Pk is the Pixel Model

∂2

∂Pixel Model
≡Dirty Image I i

M
=Ii−1

M


2
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● ME entirely in the visibility domain:

     where E
ij
 represents a direction dependent (DD) effect

● Construct a K
ij
 which models the desired DD effect

● If KT
ij 
E

ij 
~ 1 (Unitary Operator), compute update direction (Dirty 

Image) as

● Accurate residual computation (Chisq) as

● Iterations will converge – if the operator is approximately unitary

V ij
Obs
=Eij [V

o ]

FT [K ij
TV ij

Res ]− I Dirty=I o∗PSF

V ij
Res
=K ij FT

−1 [IM ]−V ij
Obs

Deconvolution: Minor Cycle

Deconvolution: Major Cycle

A small digression: Projection methods
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● ME entirely in the visibility domain:

     where E
ij
 represents a direction dependent (DD) effect

● Construct a K
ij
 which models the desired DD effect

● If KT
ij 
E

ij 
~ 1 (Unitary Operator), compute update direction (Dirty 

Image) as

● Accurate residual computation (Chisq) as

● If the operator is approximately unitary,  the iterations will converge

● Appropriate DD normalization required in the above computations

● Affects speed of convergence

● Projection methods utilize the available data optimally

● Non-linear operations (e.g. deconvolution) are done on images constructed 
using the entire data

● Errors are corrected using parametrized models

● Global corrections rather than local correction

● Since DD effects are typically also time varying, image 
domain based correction are non-optimal

● Necessarily require data partitioning

● Signal-to-noise available to solvers corresponds to a fraction of the total 
data

● Require many more DoF: At least one per direction of interest

● Local corrections ==> Could lead to “Closure errors”

Image domain vs. data domain
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Examples: 2D Imaging
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Examples: Facet Imaging
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Examples: WProjection Imaging
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● Now ignore J
ij
 (i.e., using calibrated data).  Ignore also the w-term for 

the moment:

● Some observations:

●       is direction dependent: complex gain potentially different for different 
direction in the sky

●                 : This is true for most instrumental, atmospheric /ionospheric 
corruptions (all effects that obey “closure relationship”)

● When           and stationary in time (e.g. PB of ideal, identical antennas), its 
effects can be corrected in the image domain  

Full beam imaging

V ij
Obs
 =∫ J ij

S
 s , , t  I  s ,  e

  u ij l v ij m d s

J
ij
S
=J

i
S
⊗ J

j
S∗

J i
S
=J j

S

I Obs

J s s , 
= I  s , 

J ij
S
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● Js
i
 are in general complex (complex Primary Beams!)

● In real life, 

● In real life, Js
i
 vary with time...

More observations...

Cross hand power 
pattern

Gain change at first side lobe due to rotation

Source of time variability 
● Pointing errors
● Geometric distortions

J i
S
≠ J j

S
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● ... Js
i
 vary with frequency...

● To the first order, PBs scale with frequency 

Frequency dependence
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●  ... Js
i
 vary with polarization

Polarization dependence

Parallel Hand Pattern: PBRR Cross Hand Pattern: PBRL

FT [ ER¿

∗ER ] FT [ ER¿

∗EL ]
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Error propagation

 I R
=∑


P S F∗[ P B I o

]

Azimuthal cuts at 50%, 10% and 1% of 
the Stokes-I error pattern AvgPB - PB(to)
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Examples: Stokes-I and -V imaging

W-Term errors!

Errors due PB
side-lobes?

● 3C147, EVLA,
L-Band

● High DR
“700,000:1”
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Examples: Stokes-V

Stokes-V = IRR-ILL Stokes-V Power pattern
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● Re-cap – the simplified ME

● Re-write it as

● If there exists a function K
ij
 such that KT

ij
 * E

ij
 ~ Delta Function

● Gridding:

● Imaging:

● Prediction:    

Theory: Full-beam imaging

V ij
Obs
=∫ J ij

S
 s , , t  I  s , e

  uij l v ij m d s J ij
S
=J i

S
⊗J j

S∗

V ij
Obs=E ij∗[V ]=E i

∗∗E j∗[V o ] E i :   Antenna Aperture Illumination Pattern

E i=FT [J i
s ]

V ij
G
=K ij

T
∗V ij=K ij

T
∗E ij∗[V o ]≈ [V o ] ijFFT [V o ] I d

V ij
G=K ij

T∗V ij
Obs = K ij

T∗E ij∗[V o ] ≈ [V o ]ij

V ij
M=K ij∗FFT [ I M ]

Vobs is equal to true visibilities convolved with the auto-correlation of antenna
Aperture Illumination pattern. 
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Solution: A-Projection algorithm

ℜK i
R
:   Antenna Aperture Illumination Pattern

phaseK ij 

∣K ij∣
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Solution: A-Projection algorithm

∣K ij∗E ij∣ in the image domain

FT [K ij ]
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Stokes-I: Before correction
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Stokes-I: After correction
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Stokes-V: Before correction
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Stokes-V: After correction
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Examples: EVLA Imaging
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Examples: Time varying PBs

Simulations for LWA @50MHz
(Masaya Kuniyoshi (LWA/NRAO))

Model for EVLA PB at L-Band
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● Interferometry and Synthesis in Radio Astronomy, 2nd Ed.: Thompson, Moran and Swenson

● Synthesis Imaging in Radio Astronomy: II  – The “White Book” 

● W-Projection: IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 2008

● A-Projection:  A&A, 487, 419, 2008 (arXiv:0808.0834)

● Scale sensitive deconvolution of astronomical images: A&A, 426, 747, 2004 (astro-ph/0407225)

● MS-Clean: IEEE Journal of Selected Topics in Signal Processing, Vol.2, No.5,2008

● Advances in Calibration and Imaging in Radio Interferometry: Proc. IEEE, Vol. 97, No. 8, 2008

● Calibration and Imaging challenges at low frequencies: ASP Conf. Series, Vol. 407, 2009

● High Fidelity Imaging of Moderately Resolved Source; PhD Thesis, Briggs, NMT, 1995

● Parameterized Deconvolution for Wide-band Radio Synthesis Imaging; PhD Thesis, Rao Venkata; 
NMT, 2010

● http://www.aoc.nrao.edu/~sbhatnag 

● Home pages of SKA Calibration and Imaging Workshops (CALIM), 2005, 2006, 2008, 2009  

● Home Pages of: EVLA, ALMA, ATA, LOFAR, ASKAP, SKA, MeerKat
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