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Visibility and Sky Brightness

o from the van Citttert-Zernike theorem (TMS Appendix 3.1)

— for small fields of view:
the complex visibility,V(u,v)
IS the 2D Fourier transform of
the brightness on the sky, T(X,y)

V(u,v) = [ [T(z,y)e? = tv9) dady
T(x,y) = [ [V (u,v)e2miz+vy) dydy

— u,v (wavelengths) are spatial frequencies in
E-W and N-W directions, i.e. the baseline lengths

— X,y (rad) are angles in tangent plane relative to
a reference position in the E-W and N-S directions

V(u,v) =T (x,y)



The Fourier Transform

Fourier theory states that any signal (here images)
can be expressed as a sum of sinusoids

=
g

(x,y) plane and (u,v) plane are conjugate Je'é’aptiste

T(X’y) V(U’V) = FT{T(X’y)} Joseph Fourier
1768-1830

In this example a single Fourier component encodes all
— the spatial frequency = period of the wave
— the magnitude = contrast
— the phase (not shown) = shift of wave with respect to origin

Fourier Transform image contains all information of original image



The Fourier Domain

e acquire comfort with the Fourier domain...

— In older texts, functions and their Fourier
transforms occupy upper and lower domains, as if
“functions circulated at ground level and their
transforms in the underworld” (Bracewell 1965)

« a few properties of the Fourier transform: f(z) = F(s)
— scaling: f(az) =a 'F(s/a)
_ shifting: f(z — o) = F(s)e?™*0"
— convolution/multiplication: ¢g(z) = f(z) ® h(z); G(s) = F(s)H(s)

— sampling theorem: f(z) C © completely determined
if F'(s) sampled at intervals < 1/0



Some 2D Fourier Transform Pairs

T(X,y)

Amp{V(u,v)}

Gaussian Gaussian

o0 Function Constant

narrow features transform to
wide features (and vice-versa)
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More 2D Fourier Transform Pairs

T(X.y) Amp{V(u,v)}

Disk Bessel

sharp edges result in many
high spatial frequencies

Ell. Gaussian Ell. Gaussian

orientations are orthogonal
in the (x,y) and (u,v) planes




2D Fourier Transform Pairs

Amp{V(u,v)}

structure on many scales

 T(X,y)isreal, but V(u,v)
Is complex (in general)

— Real and Imaginary
— Amplitude and Phase

— Amplitude tells “how
much” of a certain
frequency component,
Phase tells “where”

— V(-u,-v) = V*(u,v)
where * is complex
conjugation (Hermitian)

 V(u=0,v=0) — integral of
T(X,y)dxdy = total flux




Visibility and Sky Brightness

V(u,v) = [ [T(z,y)e? =09 dady




Visibility and Sky Brightness

V(u,v) = [ [T(z,y)e? =09 dady
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Aperture Synthesis

sample V(u,v) at enough points to synthesis the
equivalent large aperture of size (Uy,.y:Vimay)

— 1 pair of telescopes — 1 (u,v) sample at a time

— N telescopes —» number of samples = N(N-1)/2

— reconfigure physical layout of N telescopes for more
— fill in (u,v) plane by making use of Earth rotation
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Aperture Synthesis Telescopes
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Formal Description

« sample Fourier domain at discrete points
B(u,v) = > (uk, vi)
* the inverse Fourier transform is
TP(z,y) = FT~YB(u,v) x V(u,v)}
* the convolution theorem tells us
TP(z,y) = b(z,y) @ T(z,y)
where b(z,y) = FT-{B(u,v)} (the point spread function)

Fourier transform of sampled visibilities yields the true sky
brightness convolved with the point spread function

(the “dirty image” is the true image convolved with the “dirty beam?”)
14



Dirty Beam and Dirty Image

b(x,y) i . B(u,v)
(dirty beam) .= ’
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How to analyze interferometer data?

e uv plane analysis
— best for “simple” sources, e.g. point sources, disks
e Image plane analysis
— Fourier transform V(u,v) samples to image plane, get TP(x,y)
— but difficult to do science on dirty image
— deconvolve b(x,y) from TP(x,y) to determine (model of) T(x,y)

visibilities — dirtyimage — sky brightness

Fourier transform deconvolve
16



Detalls of the Dirty Image

e Fourier Transform

— Fast Fourier Transform (FFT) much faster than simple
Fourier summation, O(NlogN) for 2N x 2N image

— FFT requires data on regularly spaced grid
— aperture synthesis observations not on a regular grid...

o “Gridding” is used to resample V(u,v) for FFT

— customary to use a convolution technique
« visibilities are noisy samples of a smooth function
* nearby visibilities not independent

— use special (“Spheroidal”) functions with nice properties
o fall off quickly in (u,v) plane (not too much smoothing)
« fall off quickly in image plane (avoid aliasing)

VE(u,v) = V(u,v)B(u,v) ® G(u,v) = TP (z,y)g(z,v)
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Primary Beam

T(x.y)

uniform response across the

e A telescope does not have \R

N MAIN LOBE
entire sky \
— main lobe approximately soeLgse
Gaussian, fwhm ~1.2A/D BACKLOBE
(where D is ant diameter) S AY)
= “primary beam” GEOMETRIC AREA “A* — = N HALF POWER

BEAMWIDTH

— limited field of view

— sidelobes, error beam
(sometimes important)

e primary beam response
modifies sky brightness:

T(Xy) = AXY)T(X,y)

— correct with division by

A(X,y) in image plane Sy

690 GHz

large A(X,y) small A(x,y)
18



Pixel Size and Image Size

e pixel size
— should satisfy sampling theorem for the longest
baselines, Ax<1/2 U, , Ay < 1/12 v,
— In practice, 3 to 5 pixels across the main lobe of
the dirty beam (to aid deconvolution)
e Image size
— natural resolution in (u,v) plane samples
FT{A(X,y)}, Implies image size 2x primary beam

— If there are bright sources in the sidelobes of
A(X,y), then they will be aliased into the image
(need to make a larger image)

19



Dirty Beam Shape and N Antennas

2 Antennas

T T T T T T T T T T T T T T
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Dirty Beam Shape and N Antennas

4 Antennas
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Dirty Beam Shape and N Antennas

5 Antennas
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Dirty Beam Shape and N Antennas
6 Antennas

05—

50

RA offset {arcsec; J2000)

u (kA)

24



Dirty Beam Shape and N Antennas

{ Antennas

0¥

0z 0 0z~
(oppzr 'ossoge) jasjjo DUd

as 0

05—

50

RA offsel {arcsec; J2000)

u (kA)

25



Dirty Beam Shape and N Antennas
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Dirty Beam Shape and Super Synthesis

8 Antennas x 2 samples
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Dirty Beam Shape and Super Synthesis

8 Antennas x 6 samples
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Dirty Beam Shape and Super Synthesis

8 Antennas x 30 samples
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Dirty Beam Shape and Super Synthesis

8 Antennas x 107 samples

30



Dirty Beam Shape and Weighting

 Introduce weighting function W(u,v)
b(z,y) = FTHW (u,v)B(u,v)}
— W modifies sidelobes of dirty beam
— W is also gridded for FFT

e “Natural” weighting

— W(u,v) = 1/6%(u,v) at points with data and
zero elsewhere where o?(u,v) is the noise
variance of the (u,v) sample

— maximizes point source sensitivity
(lowest rms in image)

— gives more weight to shorter baselines ,,
(larger spatial scales), degrades resolution

J2000)

DEC offset (arcsec;

R4 offset (aresec; J2000)
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Dirty Beam Shape and Weighting

o “Uniform” weighting

W(u,v) is inversely proportional to local
density of (u,v) points, so sum of weights
In a (u,v) cell is a constant (or zero)

fills (u,v) plane more uniformly, so
(outer) sidelobes are lower

gives more weight to long baselines and
therefore higher angular resolution

degrades point source sensitivity
(higher rms in image)
can be trouble with sparse sampling

(cells with few data points have same
weight as cells with many data points)

J2000)

DEC offset (arcsec;

0.8

0.6

0 0.2



Dirty Beam Shape and Weighting

* “Robust” (Briggs) weighting
— variant of “uniform” that avoids giving too
much weight to cell with low natural weight
— Implementations differ, e.g. S is natural
weight of a cell, S, is a threshold

_ 1
W(u, v) B \/1+SZ2\7/St2hresh

— large threshold— natural weighting
— small threshold — uniform weighting

— parameter allows continuous variation
between optimal angular resolution and
optimal point source sensitivity

¢; J2000)

DEC offset (arcse

20 10 0 =1 —20

RA offsel (arcsec; J2000)
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Dirty Beam Shape and Weighting

e “Tapering”
— apodize the (u,v) sampling by a Gaussian

W (u,v) = exp {— (407 }

t2

t = tapering parameter (in kA; arcsec)

— like smoothing in the image plane
(convolution by a Gaussian)

— gives more weight to shorter baselines,
degrades angular resolution

— degrades point source sensitivity but can
Improve sensitivity to extended structure

— could use an elliptical Gaussian
— limits to usefulness




Natural
1.7x1.4

c=1.0
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Weighting and Tapering: Noise
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Weighting and Tapering: Summary

e Imaging parameters provide a lot of freedom

Robust/Uniform | Natural Taper
Resolution high medium low
Sidelobes lower higher depends
Point Source lower maximum lower
Sensitivity
Extended Source | lower medium higher

Sensitivity

36



Deconvolution

 difficult to do science on dirty image
* deconvolve b(x,y) from TP(x,y) to recover T(x,y)
 information is missing, so be careful!

dirty image “CLEAN” image
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Deconvolution Philosophy

» to keep you awake at night

— 3 an infinite number of T(x,y) compatible with sampled V(u,v),
l.e. “invisible” distributions R(X,y) where b(x,y) ® R(x,y) =0
e no data beyond u_,.V. = unresolved structure
* no data within u.,,,v,,;, — limit on largest size scale
* holes betweenu,.,v,,,and u_...,v,.,— sidelobes
— noise — undetected/corrupted structure in T(X,y)
— No unigue prescription for extracting optimum estimate of true

sky brightness from visibility data

e deconvolution

— uses non-linear techniques effectively interpolate/extrapolate
samples of V(u,v) into unsampled regions of the (u,v) plane

— aims to find a sensible model of T(x,y) compatible with data
— requires a priori assumptions about T(X,y)
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Deconvolution Algorithms

e most common algorithms in radio astronomy

— CLEAN (H6gbom 1974)
e a priori assumption: T(x,y) is a collection of point sources
 variants for computational efficiency, extended structure

— Maximum Entropy (Gull and Skilling 1983)

e a priori assumption: T(X,y) is smooth and positive

» vast literature about the deep meaning of entropy (Bayesian)
— hybrid approaches of these can be effective

« deconvolution requires knowledge of beam shape and
Image noise properties (usually OK for aperture synthesis)
— atmospheric seeing can modify effective beam shape
— deconvolution process can modify image noise properties

39



Basic CLEAN Algorithm

Initialize
e aresidual map to the dirty map
 a Clean component list to empty

|dentify strongest feature in residual
map as a point source

Add a fraction g (the loop gain) of
this point source to the clean
component list

Subtract the fraction g times b(X,y)
from residual map

If stopping criteria not reached, goto
step 2 (an interation)

Convolve Clean component (cc) list
by an estimate of the main lobe of
the dirty beam (the “Clean beam”)
and add residual map to make the
final “restored” image

12000}

DEC offset (arcsec;

12000}

DEC offset (arcsec;

10 0 -10
R4 offset (aresec; J2000)

10 0 -10
R4 offset (aresec; J2000)

-20

—20

0.8

0.6

0.4

0.2

b(x.y)

TO(xy)
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Basic CLEAN Algorithm (cont)

stopping criteria

— residual map max < multiple of rms (when noise limited)

— residual map max < fraction of dirty map max (dynamic range limited)
— max number of clean components reached

loop gain: good results forg ~ 0.1 to 0.3

easy to include a priori information about where to
search for clean components (“clean boxes”)
— very useful but potentially dangerous!

Schwarz (1978). CLEAN is equivalent to a least
sguares fit of sinusoids (in the absense of noise)

41
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CLEAN with Box

To(xy) CLEAN
model
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image :
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model

| " residual
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CLEAN Variants

Clark CLEAN

— aims at faster speed for large images
—  Hogbome-like “minor” cycle w/ truncated dirty beam, subset of largest residuals

— in “major” cycle, cc’s are FFT'd and subtracted from the FFT of the residual
image from the previous “major” cycle

Cotton-Schwab CLEAN (MX)

— in “major” cycle, cc’s are FFT'd and subtracted from ungridded visibilities
— more accurate but slower (gridding steps repeated)

Steer, Dewdny, Ito (SDI) CLEAN

— aims to supress CLEAN *“stripes” in smooth, extended emission

— in “minor” cycles, any point in the residual map greater than a fraction (<1) of
the maximum is taken as a cc

Multi-Resolution CLEAN

— aims to account for coupling between pixels by extended structure
— independently CLEAN a smooth map and a difference map, fewer cc’s
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“Restored” Images

e CLEAN beam size:

— natural choice is to fit the central peak of the dirty beam
with elliptical Gaussian

— unit of deconvolved map is Jy per CLEAN beam area
(= intensity, can convert to brightness temperature)

— minimize unit problems when adding dirty map residuals
— modest super resolution often OK, but be careful

* “restored” image does not fit the visibility data
e photometry should be done with caution
— CLEAN does not conserve flux (extrapolates)

— extended structure missed, attenuated, distorted
— phase errors (e.g. seeing) can spread signal around
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Noise In Images

point source sensitivity: straightforward
— telescope area, bandwidth, integration time, weighting

In image, modify noise by primary beam response

extended source sensitivity: problematic

not quite right to divide noise by Yn beams covered by
source: smoothing = tapering, omitting data — lower limit

always missing flux at some spatial scale

be careful with low signal-to-noise images

If position known, 3o OK for point source detection
If position unknown, then 5c required (flux biased by ~1c)

If < 66, cannot measure the source size (require ~3c
difference between “long” and “short” baselines)

spectral lines may have unknown position, velocity, width
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Maximum Entropy Algorithm

(o

Maximize a measure of
smoothness (the entropy)

_ Ty
H = Zkalog(M’“k)
subject to the constraints

V(ug,v,)—FT{T}|?
X2:Zk|(k k?yz {T}|

F — Zk’ Tk 20 10 0 -10 -20

R4 offset (aresec; J2000)

0.8

12000}

0.6

b(x.y)

0.4

DEC offset (arcsec;
10

0.2

M is the “default image”

fast (NlogN) non-linear
optimization solver due to
Cornwell and Evans (1983)

optional: convolve with
Gaussian beam and add
residual map to make map

12000}

DEC offset (arcsec;

20 10 0 -10 —-20
RA offset (aresec; J2000) 48



Maximum Entropy Algorithm (cont)

easy to include a priori information with default image
— flat default best only if nothing known (or nothing observed!)

straightforward to generalize ¢2 to combine different
observations/telescopes and obtain optimal image

many measures of “entropy” available
— replace log with cosh — “emptiness” (does not enforce positivity)

less robust and harder to drive than CLEAN
works well on smooth, extended emission
trouble with point source sidelobes

Nno noise estimate possible from image
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o}

Declination offset (arcse

Example: Dust around Vega

e tune resolution and sensitivity to suit science
 Wilner et al. 2002, ApJ, 569, L115:

Vega 850 um

Holland et al. 1998

E iz { mly/beam)

40

20 0
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2.8 x 2.1 arcsec
stellar photosphere
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and dust blobs

51



Missing Low Spatial Frequencies ()

e Large Single Telescope

make an image by scanning across the sky

all Fourier components from 0 to D sampled, where D is the
telescope diameter (weighting depends on illumination)

density of |
D uv points

—

—

D

(u,v)

Fourier transform single dish map = T(x,y) ® A(X,y), then
divide by a(x,y) = FT{A(x,y)}, to estimate V(u,v)

U (u,v) = Wlwato)]

a(u,v)

choose D large enough to overlap interferometer samples of
V(u,v) and avoid using data where a(x,y) becomes small
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Missing Low Spatial Frequencies (ll)

« separate array of smaller telescopes

— use smaller telescopes observe short baselines not
accessible to larger telescopes

— shortest baselines from larger telescopes total power maps

ALMA with ACA
64 x12m: 12to 14000 m
+12x 7m: fills~7to 12 m
+4x12m: filsOto~7m
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Missing Low Spatial Frequencies (lll)

mosaic with a homogeneous array

— recover a range of spatial frequencies around the nominal
baseline b using knowledge of A(x,y) (Ekers and Rots 1979)
(and get shortest baselines from total power maps)

I b+D

I
\T/ — —/ \ A

b
uv
b-D D ( )

— V(u,v) is linear combination of baselines from b—D to b+D

— depends on pointing direction (x,,Y,) as well as (u,v)
V(u,v;20,90) = [ [ T(2,9) Az — 20,y — yo) >+ dudy

— Fourier transform with respect to pointing direction (X,,Y,)

[ [ V(uwizo,yo)e? i orotvovo) dg, dy,

a(to,vo)

Vu—t,v—1,) =
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Self Calibration

a priori calibration not perfect

— interpolated from different time, different sky direction from source
basic idea of self calibration

— correct for antenna-based errors together with imaging
works because

— at each time, measure N complex gains and N(N-1)/2 visibilities

— source structure represented by small number of parameters

— highly overconstrained problem if N large and source simple

In practice, an iterative, non-linear relaxation process

— assume initial model — solve for time dependent gains — form new sky
model from corrected data using e.g. CLEAN — solve for new gains...

— requires sufficient signal-to-noise ratio for each solution interval
loses absolute position information
dangerous with small N, complex source, low signal-to-noise
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Summary

Calibrated Visibilities
U Fourier Transform
Dirty Beam and Dirty Image
U Deconvolution
Clean Beam, Sky Model, “restored” Image
U Analysis
Physical Information on Source

AIPS Miriad GILDAS
Fourier Imagr invert UV_MAP
Transform
CLEAN imagr clean, restor CLEAN
deconvolution




Concluding Remarks

Interferometry samples visibilities that are related to a
sky brightness image by the Fourier transform

deconvolution corrects for incomplete sampling

remember... there are usually an infinite number of
Images compatible with the sampled visibilities

astronomer must use judgement in imaging process
Imaging is generally fun (compared to calibration)

many, many issues not covered today (see References)
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