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• from the van Citttert-Zernike theorem (TMS Appendix 3.1)

– for small fields of view:
the complex visibility,V(u,v)
is the 2D Fourier transform of
the brightness on the sky,T(x,y)

– u,v (wavelengths) are spatial frequencies in
E-W and N-W directions, i.e. the baseline lengths

– x,y (rad) are angles in tangent plane relative to
a reference position in the E-W and N-S directions

Visibility and Sky Brightness

T(x,y)x

y
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• Fourier theory states that any signal (here images)
can be expressed as a sum of sinusoids

• (x,y) plane and (u,v) plane are conjugate
T(x,y)              V(u,v) = FT{T(x,y)}

• in this example a single Fourier component encodes all
– the spatial frequency = period of the wave
– the magnitude = contrast
– the phase (not shown) = shift of wave with respect to origin

• Fourier Transform image contains all information of original image

The Fourier Transform

Jean Baptiste

Joseph Fourier
1768-1830
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• acquire comfort with the Fourier domain…
– in older texts, functions and their Fourier 

transforms occupy upper and lower domains, as if
“functions circulated at ground level and their 
transforms in the underworld’’ (Bracewell 1965)

• a few properties of the Fourier transform:
– scaling:
– shifting:
– convolution/multiplication:
– sampling theorem: 

The Fourier Domain
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Some 2D Fourier Transform Pairs

T(x,y)            Amp{V(u,v)}
Gaussian Gaussian

δ Function Constant

narrow features transform to
wide features (and vice-versa)
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More 2D Fourier Transform Pairs

T(x,y)            Amp{V(u,v)}
Disk Bessel

sharp edges result in many
high spatial frequencies

Ell. Gaussian Ell. Gaussian

orientations are orthogonal
in the (x,y) and (u,v) planes
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2D Fourier Transform Pairs

T(x,y)            Amp{V(u,v)}
structure on many scales

• T(x,y) is real, but V(u,v) 
is complex (in general)
– Real and Imaginary
– Amplitude and Phase
– Amplitude tells “how 

much” of a certain 
frequency component, 
Phase tells “where”

– V(-u,-v) = V*(u,v)
where * is complex 
conjugation (Hermitian)

• V(u=0,v=0) → integral of 
T(x,y)dxdy = total flux
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Visibility and Sky Brightness
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Visibility and Sky Brightness
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Aperture Synthesis

• sample V(u,v) at enough points to synthesis the 
equivalent large aperture of size (umax,vmax)
– 1 pair of telescopes → 1 (u,v) sample at a time
– N telescopes → number of samples = N(N-1)/2
– reconfigure physical layout of N telescopes for more
– fill in (u,v) plane by making use of Earth rotation

(Sir Martin Ryle, 1974 Nobel Prize in Physics)

3 configurations
of 8 SMA antennas

at 345 GHz
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Aperture Synthesis Telescopes

(e)VLA ATCA

IRAM PdBI

SMA

CARMA
(=OVRO+BIMA)
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• in aperture synthesis, V(u,v) samples are limited by 
number of telescopes, and Earth-sky geometry

Imaging: (u,v) plane Sampling

– high spatial frequencies
• maximum angular resolution

– low spatial frequencies
• extended structures invisible

– irregular within high/low limits
• sampling theorem violated
• information lost
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• sample Fourier domain at discrete points

• the inverse Fourier transform is

• the convolution theorem tells us

where (the point spread function)

Fourier transform of sampled visibilities yields the true sky 
brightness convolved with the point spread function

(the “dirty image” is the true image convolved with the “dirty beam”)

Formal Description
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Dirty Beam and Dirty Image

b(x,y)
(dirty beam)

T(x,y)

B(u,v)

TD(x,y)
(dirty image)
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How to analyze interferometer data?
• uv plane analysis

– best for “simple” sources, e.g. point sources, disks
• image plane analysis

– Fourier transform V(u,v) samples to image plane, get TD(x,y)
– but difficult to do science on dirty image
– deconvolve b(x,y) from TD(x,y) to determine (model of) T(x,y)

visibilities        → dirty image    → sky brightness

Fourier transform deconvolve
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Details of the Dirty Image

• Fourier Transform
– Fast Fourier Transform (FFT) much faster than simple 

Fourier summation, O(NlogN) for 2N x 2N image
– FFT requires data on regularly spaced grid
– aperture synthesis observations not on a regular grid…

• “Gridding” is used to resample V(u,v) for FFT
– customary to use a convolution technique

• visibilities are noisy samples of a smooth function
• nearby visibilities not independent

– use special (“Spheroidal”) functions with nice properties
• fall off quickly in (u,v) plane (not too much smoothing)
• fall off quickly in image plane (avoid aliasing)
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Primary Beam 
• A telescope does not have 

uniform response across the 
entire sky
– main lobe approximately 

Gaussian, fwhm ~1.2λ/D 
(where D is ant diameter)
= “primary beam”

– limited field of view
– sidelobes, error beam 

(sometimes important)

• primary beam response 
modifies sky brightness:  
T(x,y) → A(x,y)T(x,y)
– correct with division by 

A(x,y) in image plane

A(x,y)

T(x,y)

SMA
345 GHz ALMA 

690 GHz

T(x,y)  large A(x,y)          small A(x,y)
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Pixel Size and Image Size

• pixel size
– should satisfy sampling theorem for the longest 

baselines, Δx < 1/2 umax , Δy < 1/2 vmax

– in practice, 3 to 5 pixels across the main lobe of 
the dirty beam (to aid deconvolution)

• image size
– natural resolution in (u,v) plane samples 

FT{A(x,y)}, implies image size 2x primary beam
– if there are bright sources in the sidelobes of 

A(x,y), then they will be aliased into the image 
(need to make a larger image)
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Dirty Beam Shape and N Antennas

2 Antennas
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Dirty Beam Shape and N Antennas

3 Antennas
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Dirty Beam Shape and N Antennas

4 Antennas
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Dirty Beam Shape and N Antennas

5 Antennas
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Dirty Beam Shape and N Antennas

6 Antennas
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Dirty Beam Shape and N Antennas

7 Antennas
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Dirty Beam Shape and N Antennas

8 Antennas
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Dirty Beam Shape and Super Synthesis

8 Antennas x 2 samples
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Dirty Beam Shape and Super Synthesis

8 Antennas x 6 samples
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Dirty Beam Shape and Super Synthesis

8 Antennas x 30 samples
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Dirty Beam Shape and Super Synthesis

8 Antennas x 107 samples
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Dirty Beam Shape and Weighting

• introduce weighting function W(u,v)

– W modifies sidelobes of dirty beam
– W is also gridded for FFT

• “Natural” weighting
– W(u,v) = 1/σ2(u,v) at points with data and         

zero elsewhere where σ2(u,v) is the noise 
variance of the (u,v) sample

– maximizes point source sensitivity
(lowest rms in image)

– gives more weight to shorter baselines 
(larger spatial scales), degrades resolution
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Dirty Beam Shape and Weighting

• “Uniform” weighting
– W(u,v) is inversely proportional to local 

density of (u,v) points, so sum of weights    
in a (u,v) cell is a constant (or zero)

– fills (u,v) plane more uniformly, so
(outer) sidelobes are lower

– gives more weight to long baselines and 
therefore higher angular resolution

– degrades point source sensitivity               
(higher rms in image)

– can be trouble with sparse sampling       
(cells with few data points have same 
weight as cells with many data points)
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Dirty Beam Shape and Weighting

• “Robust” (Briggs) weighting
– variant of “uniform” that avoids giving too 

much weight to cell with low natural weight
– implementations differ, e.g. SN is natural 

weight of a cell, St is a threshold

– large threshold→ natural weighting
– small threshold → uniform weighting
– parameter allows continuous variation 

between optimal angular resolution and 
optimal point source sensitivity
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Dirty Beam Shape and Weighting

• “Tapering”
– apodize the (u,v) sampling by a Gaussian

t = tapering parameter (in kλ; arcsec)
– like smoothing in the image plane 

(convolution by a Gaussian)
– gives more weight to shorter baselines,

degrades angular resolution
– degrades point source sensitivity but can 

improve sensitivity to extended structure
– could use an elliptical Gaussian
– limits to usefulness
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Natural
+ Taper
4.2x3.9

σ=1.54

Robust
+ Taper
1.7x1.4

σ=1.30

Weighting and Tapering: Noise

Natural
1.7x1.4

σ=1.0

Uniform
0.9x0.7

σ=1.58

Robust
1.0x0.8

σ=1.28
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Weighting and Tapering: Summary

lowmediumhighResolution

highermediumlowerExtended Source 
Sensitivity

lowermaximumlowerPoint Source 
Sensitivity

dependshigherlowerSidelobes

TaperNaturalRobust/Uniform

• imaging parameters provide a lot of freedom
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• difficult to do science on dirty image
• deconvolve b(x,y) from TD(x,y) to recover T(x,y)
• information is missing, so be careful!

Deconvolution

dirty image “CLEAN” image
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Deconvolution Philosophy
• to keep you awake at night

– ∃ an infinite number of T(x,y) compatible with sampled V(u,v), 
i.e. “invisible” distributions R(x,y) where b(x,y) ⊗ R(x,y) = 0

• no data beyond umax,vmax → unresolved structure
• no data within umin,vmin → limit on largest size scale
• holes between umin,vmin and umax,vmax → sidelobes

– noise → undetected/corrupted structure in T(x,y)
– no unique prescription for extracting optimum estimate of true 

sky brightness from visibility data

• deconvolution  
– uses non-linear techniques effectively interpolate/extrapolate 

samples of V(u,v) into unsampled regions of the (u,v) plane
– aims to find a sensible model of T(x,y) compatible with data
– requires a priori assumptions about T(x,y)
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Deconvolution Algorithms

• most common algorithms in radio astronomy
– CLEAN (Högbom 1974)

• a priori assumption: T(x,y) is a collection of point sources
• variants for computational efficiency, extended structure

– Maximum Entropy (Gull and Skilling 1983)
• a priori assumption: T(x,y) is smooth and positive
• vast literature about the deep meaning of entropy (Bayesian)

– hybrid approaches of these can be effective

• deconvolution requires knowledge of beam shape and 
image noise properties (usually OK for aperture synthesis)
– atmospheric seeing can modify effective beam shape
– deconvolution process can modify image noise properties
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Basic CLEAN Algorithm
1. Initialize

• a residual map to the dirty map
• a Clean component list to empty

2. Identify strongest feature in residual
map as a point source

3. Add a fraction g (the loop gain) of 
this point source to the clean 
component list

4. Subtract the fraction g times b(x,y) 
from residual map

5. If stopping criteria not reached, goto 
step 2 (an interation)

6. Convolve Clean component (cc) list 
by an estimate of the main lobe of 
the dirty beam (the “Clean beam”)
and add residual map to make the 
final “restored” image

b(x,y)

TD(x,y)
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Basic CLEAN Algorithm (cont)

• stopping criteria
– residual map max < multiple of rms (when noise limited)
– residual map max < fraction of dirty map max (dynamic range limited)
– max number of clean components reached

• loop gain: good results for g ~ 0.1 to 0.3
• easy to include a priori information about where to 

search for clean components (“clean boxes”)
– very useful but potentially dangerous!

• Schwarz (1978): CLEAN is equivalent to a least 
squares fit of sinusoids (in the absense of noise)



42

CLEAN

restored 
image

residual 
map

CLEAN 
model

TD(x,y)
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CLEAN with Box

restored 
image

residual 
map

CLEAN 
model

TD(x,y)
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CLEAN with Poor Choice of Box

restored 
image

residual 
map

CLEAN 
model

TD(x,y)



45

CLEAN Variants

• Clark CLEAN
– aims at faster speed for large images
– Högbom-like “minor” cycle w/ truncated dirty beam, subset of largest residuals
– in “major” cycle, cc’s are FFT’d and subtracted from the FFT of the residual 

image from the previous “major” cycle

• Cotton-Schwab CLEAN (MX)
– in “major” cycle, cc’s are FFT’d and subtracted from ungridded visibilities
– more accurate but slower (gridding steps repeated)

• Steer, Dewdny, Ito (SDI) CLEAN
– aims to supress CLEAN “stripes” in smooth, extended emission
– in “minor” cycles, any point in the residual map greater than a fraction (<1) of 

the maximum is taken as a cc

• Multi-Resolution CLEAN
– aims to account for coupling between pixels by extended structure
– independently CLEAN a smooth map and a difference map, fewer cc’s
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“Restored” Images

• CLEAN beam size:
– natural choice is to fit the central peak of the dirty beam 

with elliptical Gaussian
– unit of deconvolved map is Jy per CLEAN beam area

(= intensity, can convert to brightness temperature)
– minimize unit problems when adding dirty map residuals
– modest super resolution often OK, but be careful

• “restored” image does not fit the visibility data
• photometry should be done with caution

– CLEAN does not conserve flux (extrapolates)
– extended structure missed, attenuated, distorted
– phase errors (e.g. seeing) can spread signal around
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Noise in Images

• point source sensitivity: straightforward
– telescope area, bandwidth, integration time, weighting 
– in image, modify noise by primary beam response

• extended source sensitivity: problematic
– not quite right to divide noise by √n beams covered by 

source: smoothing = tapering, omitting data → lower limit
– always missing flux at some spatial scale

• be careful with low signal-to-noise images
– if position known, 3σ OK for point source detection
– if position unknown, then 5σ required (flux biased by ~1σ)
– if < 6σ, cannot measure the source size (require ~3σ

difference between “long” and “short” baselines)
– spectral lines may have unknown position, velocity, width



48

– Maximize a measure of 
smoothness (the entropy)

subject to the constraints

– M is the “default image”
– fast (NlogN) non-linear 

optimization solver due to 
Cornwell and Evans (1983)

– optional: convolve with 
Gaussian beam and add 
residual map to make map

b(x,y)

TD(x,y)

Maximum Entropy Algorithm
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Maximum Entropy Algorithm (cont)

• easy to include a priori information with default image
– flat default best only if nothing known (or nothing observed!)

• straightforward to generalize χ2 to combine different 
observations/telescopes and obtain optimal image

• many measures of “entropy” available
– replace log with cosh → “emptiness” (does not enforce positivity)

• less robust and harder to drive than CLEAN
• works well on smooth, extended emission
• trouble with point source sidelobes
• no noise estimate possible from image
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Maximum Entropy

restored 
image

residual 
map

MAXEN 
model

TD(x,y)
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Example: Dust around Vega

• tune resolution and sensitivity to suit science
• Wilner et al. 2002, ApJ, 569, L115:

2.8 x 2.1 arcsec
stellar photosphere

5.3x4.6 arcsec
and dust blobs

SCUBA: 14 arcsec

Vega 850 μm
Holland et al. 1998

fwhm
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Missing Low Spatial Frequencies (I)

• Large Single Telescope
– make an image by scanning across the sky
– all Fourier components from 0 to D sampled, where D is the 

telescope diameter (weighting depends on illumination)

– Fourier transform single dish map = T(x,y) ⊗ A(x,y), then 
divide by a(x,y) = FT{A(x,y)}, to estimate V(u,v)

– choose D large enough to overlap interferometer samples of 
V(u,v) and avoid using data where a(x,y) becomes small

density of 
uv points

(u,v)
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Missing Low Spatial Frequencies (II)

• separate array of smaller telescopes
– use smaller telescopes observe short baselines not 

accessible to larger telescopes
– shortest baselines from larger telescopes total power maps

ALMA with ACA
64 x 12 m:   12 to 14000 m

+12 x 7 m: fills ~7 to 12 m
+ 4 x 12 m:   fills 0 to ~7 m
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Missing Low Spatial Frequencies (III)

• mosaic with a homogeneous array
– recover a range of spatial frequencies around the nominal 

baseline b using knowledge of A(x,y) (Ekers and Rots 1979) 
(and get shortest baselines from total power maps)

– V(u,v) is linear combination of baselines from b-D to b+D
– depends on pointing direction (xo,yo) as well as (u,v)

– Fourier transform with respect to pointing direction (xo,yo) 

(u,v)
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Self Calibration
• a priori calibration not perfect

– interpolated from different time, different sky direction from source
• basic idea of self calibration 

– correct for antenna-based errors together with imaging
• works because

– at each time, measure N complex gains and N(N-1)/2 visibilities
– source structure represented by small number of parameters
– highly overconstrained problem if N large and source simple

• in practice, an iterative, non-linear relaxation process
– assume initial model → solve for time dependent gains → form new sky 

model from corrected data using e.g. CLEAN → solve for new gains…
– requires sufficient signal-to-noise ratio for each solution interval

• loses absolute position information
• dangerous with small N, complex source, low signal-to-noise
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Summary

CLEANclean, restorimagrCLEAN 
deconvolution

UV_MAPinvertimagrFourier 
Transform

GILDASMiriadAIPS

Calibrated Visibilities
⇓ Fourier Transform

Dirty Beam and Dirty Image
⇓ Deconvolution

Clean Beam, Sky Model, “restored” Image
⇓ Analysis

Physical Information on Source
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Concluding Remarks

• interferometry samples visibilities that are related to a 
sky brightness image by the Fourier transform

• deconvolution corrects for incomplete sampling

• remember… there are usually an infinite number of 
images compatible with the sampled visibilities

• astronomer must use judgement in imaging process
• imaging is generally fun (compared to calibration)

• many, many issues not covered today (see References)


