High Dynamic Range Imaging

Luz

Ando pendiente de los juegos de la luz de como el vidrio empañado se ilumina de repente contrastando con la noche

de Alejandra Pinto

Light

I am taken by light's play, how suddenly a fogged glass lights up in contrast with the night

by Alejandra Pinto

Imaging with high dynamic range

- Dynamic range is the ratio of the observed signal to the noise.
- Fidelity is the ratio of the true sky signal to the noise
- These are limited by errors
 - Random
 - Systematic
 - Absence of measurements
 - Malfunction

EVLA observations will be limited often by systematic errors

Imaging concepts

Radio interferometers are linear devices

Imaging: Estimation of true sky brightness from the observed visibilities Imaging is a non-linear process

 Imaging: Fourier inversion of the visibilities
 Weighting modifies the point-spread function and the noise characteristics (SNR)

Deconvolution: Correcting for "missed" visibilities
 A number of methods lead to somewhat different results

③ Self-calibration: Correcting the visibilities to sharpen the image Improve on calibration (SNR permitting)

Example: Self-calibration of a VLA snapshot

Initial image

Final image

Formal Description (simple version)

• For small fields of view, the visibility function is the 2-D Fourier transform of the sky brightness:

$$V(u,v) = \int I(l,m) \cdot e^{j \cdot 2\pi \cdot (ul + vm)} dl.dm$$

• We sample the Fourier plane at a discrete number of points:

$$S(u,v) = \sum_{k} w_k \cdot \delta(u-u_k) \cdot \delta(v-v_k)$$

• So the inverse transform is:

$$I^{D}(x,y) = F^{-1}[S(u,v) \cdot V(u,v)]$$

Applying the Fourier convolution theorem:

$$I^{D}(x,y) = B(x,y) \otimes I(x,y)$$

where B is the point spread function:

 $B(x,y) = F^{-1}[S(u,v)]$

Images: Sum of interference patterns

Errors due to one bad interferometer

- Consider a point source at the phase center, 1 Jy
- Errors in one baseline:

$$V(u) = (1 + \varepsilon)\delta(u - u_0)e^{-i\phi}$$

lead to errors in the image:

 $I(l) = 2 \sum_{k=1}^{N(N-1)/2} \cos(2\pi u_k l) + 2\phi \sin(2\pi u_0 l) + 2\varepsilon \cos(2\pi u_0 l)$

and dynamic range is limited to: $D \sim \frac{Peak}{Noise} \sim \frac{N(N-1)}{\sqrt{2(\varepsilon^2 + \phi^2)}}$

or ~2500 for ϕ ~ 6° and ε ~ 0.1

the errors might or not average over baselines, time, ...

Errors due to missing data

Deconvolution interpolates unmeasured visibility values
 The missing spacings can be important if V(u,v) changes significantly
 Errors result in ripples, bowls, missing or altered structures, ...

Pixelization can induce errors even on isolated point sources!

Real Arrays

Figure 1: The VLA primary antenna pattern as measured during the NVSS survey [3] at 1.4 GHz. The instrumental Stokes V is shown in color with a scale bar at the top and contours are plotted every 10 percent in power.

Each beam is offset from the nominal pointing center by:

 $\Theta_{\rm S} = \pm 237.56$ (arcsecond/meter) · λ

(a beam squint of 1.70' for v = 1.4 GHz).

This leads to a fractional value of: Squint / FWHM = 0.0549 ± 0.0005 Also polarization coupling; these errors vary with elevation, Temp., time

Real Arrays: Measurement Equation

Actual observations measure:

$$V_{ij}^{Obs} = M_{ij} \int M_{ij}^{Sky}(s) I(s) e^{2\pi i s \cdot b_{ij}} ds$$

• where V_{0}^{0} is the full-polarization visibility vector,

- $M_{a}(s)$ and $M_{a}^{se}(s)$ are matrices describing directionally-
- independent and directionally-dependent gains, *I* describes the full-polarization sky emission, *s* is the position vector and b_{ii} denotes the baseline.

High-accuracy imaging

- Initialize: Set of images (facets, planes if using w-projection)
 - Re-center facets, add new facets
- Deconvolve, update model image
- Compute residual visibilities accurately corrections go here!
- Compute residual images
- Back to deconvolution step, or
- Self-calibration
- Back to beginning unless residuals are noise-like
- Smooth the deconvolved image, add residual image

• Even off-centering by 0.01 pixel limits dynamic range.

• Even off-centering by 0.01 pixel limits dynamic range.

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint

- Even off-centering by 0.01 pixel limits dynamic range.
- Observations at half-power are limited by the squint
- After full-correction, dynamic range is limited by coverage
- Dynamic range can be increased by dropping baselines
 But Fidelity is surely lowered!

Example: IC 2233 & Mk 86

- IC 2233 is an isolated superthin galaxy (D \sim 10.5 +/- 1 Mpc)
- Mk 86 is a blue compact dwarf galaxy (D ~ 7 +/- 1 Mpc)
- They were believed to be an interacting pair
- Key experimental points:
 - The Field contains 2 "4C" sources so high dynamic range was necessary
 - The VLA suffers from Beam-Squint which leaves behind spurious signals
 - Small errors in the continuum emission can mask spectral line emission (errors cause ripples, chromatic aberration leads to spurious spectral features)
 - There are ghost sources at the band edges (rms higher in edge channels)

Ghosts: Spectral ripples

Cannot be corrected easily as amplitude depends on the phase of the *uncalibrated* visibility. It cancels at the phase center.

The final spectral cube

"Movie" showing a consecutive series of channel images of IC 2233 & Mk 86 (notice the ghost images in the first and last few channels).

IC 2233 & Mk 86: Standard continuum

IC 2233 & Mk 86: Stokes V

IC 2233 & Mk 86: Squint corrected

IC 2233 & Mk 86: Stokes V, Squint corrected

IC 2233 shows corrugations in HI !

(L. D. Matthews & JMU, AJ 135, 291, 2008)

Other effects: Pointing corrections?

- It would seem possible (in principle)
 - Demonstrated on simulations (point sources, perfect calibration)
- But, the correction is not orthogonal to Amplitude selfcal
 - Likely always dominated by one source (as in IC2233)
 - Need correction of other effects too (extended emission)

- It would seem best to point the VLA better!
 - Better understanding of antennas and pointing equation
 - Might need reference pointing for high dynamic range (always?)

Other effects: Extended Emission

- It will be necessary to represent extended emission correctly
- A number of scale-sensitive algorithms are being developed
 - Multi-scale, multi-resolution clean (a-priori scales)
 - Adaptive Scale Pixel decomposition (no a-priori scales assumed)
- It will be necessary to include spectral indices
 - Position dependent
- Should be hands-off
 - Scales, spectral indices should be derived from the visibilities

Imaging of extended emission

- Simulated "data."
- Images similar
- (Clean, MEM,
- MS-clean, ASP).

But the residuals are very different!

ASP deconvolution: Example

Animation courtesy of Sanjay Bhatnagar.

Other effects: Non-isoplanaticity

- Wide-fields need direction-dependent corrections.
- Often handled with "peeling" algorithms:
 - Introduce (too) many degrees of freedom
 - Nonlinear effects generate ghosts
 - Only correct the vicinity of strong sources

Virgo A, 75 MHz (VLA A configuration)

FOV ~ 30' x 15', 1 minute snapshots data from Rick Perley, movie courtesy of Bill Cotton

Troposphere vs. ionosphere

~DI errors corrected with selfcalibration ~DD errors

attempted correction with phase-screen models

Images distorted by ionosphere

Some changes appear correlated, some do not ...

Non-isoplanaticity corrections

- Model ionosphere as a wedge over each antenna
 - Fit 2nd order Zernicke polynomials to strong-source positions
- Evaluate residual "seeing," impose cutoff
 - Apply corrections to whole field.
- Center strong sources on separate "facets"
 - Apply corrections to whole field.
- Dynamic range still limited (artifacts on strong sources)
 - Local selfcalibration on strong sources (peeling)
 - Non-linear procedure \rightarrow can generate ghosts

Ionospheric corrections: Distortions

Observations at 322 MHz with VLA A-configuration

Ionospheric corrections: Images

Ionospheric corrections: Images

Virgo A, 74 MHz, 25"

"Empty field," 322 MHz, 6"

Acknowledgements and references

I have benefited from many conversations with Bill Cotton, Tim Cornwell, Sanjay Bhatnagar and Ed Fomalont.

References:

Interferometry and Synthesis in Radio Astronomy (2nd Edition) by A. R. Thompson, J. M. Moran & G. W. Swenson, Wiley (2001)

Synthesis Imaging in Radio Astronomy II. Eds. G. B. Taylor, C. L. Carilli & R. A. Perley, ASP Conference Series vol. 180 (1999)

EVLA Memo series

Bhatnagar, S. & Cornwell, T. J., Astron & Astrophys. 426, 747 (2004)

Bhatnagar, S., Cornwell, T. J., Golap, K. & Uson, J. M. Astron & Astrophys. (2008, in press)

Cotton, W. D. & Uson, J. M. Astron & Astrophys. (2008, submitted)

Uson, J. M. & Cotton, W. D. Astron & Astrophys. (2008, in press)

The Edge Facing Us

We know the stars are reliable. The moon is not forever but, too, we know it returns.

by Simon J. Ortiz

A Demonstration

- Real-time demonstration of Stokes I+V imaging that includes finding and re-centering strong sources, auto-windowing, squint correction and phase and amplitude self-calibration.
- Run using the Obit platform developed by Bill Cotton.