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Some definitions

Iν  (or Bν ) =  Surface Brightness :  erg/s/cm2/Hz/sr
(=  intensity)

Sν  =  Flux density :    erg/s/cm2/Hz  Iν ΔΩ∫
S =  Flux :  erg/s/cm2 Iν ΔΩΔν∫
P =  Power received :  erg/s Iν ΔΩΔνΔAtel∫
E =  Energy :  erg  Iν ΔΩΔνΔAtel∫ Δt



Interferometric Radiometry Equation

Srms =
2kTsys

Aeff NA (NA −1)tintΔν

Physically motivate terms  

• Wave noise and photon statistics

• Quantum noise (Optical vs. Radio interferometry) 

• Temperature in Radio Astronomy (Johnson-Nyquist resistor 
noise, Antenna Temp, Brightness Temp)

• Number of independent measurements of TA /Tsys

• Some interesting consequences



Photon statistics: Bose-Einstein statistics for gas without number  
conservation (Reif Chap 9)

Thermal equilibrium => Planck distribution function

ns = photon occupation number, relative number in state s   

= number of photons in standing-wave mode in box at temperature T  

= number of photons/s/Hz  in (diffraction limited) beam in free space  
(Richards 1994, J.Appl.Phys, 76, 1)

Photon noise: variance in # photons arriving each second in free space beam

Δns
2 ≡ ns − ns( )2

= ns + ns
2

ns =Poisson Stats =shot noise =counting stats (root n)

ns
2 =Wave noise  

ns = eh ν s /k T −1( )−1



Origin of wave noise: ‘Bunching of Bosons’ in phase space 
(time and frequency) allows for interference (ie. coherence).

Bosons can, and will, occupy the exact same phase space if allowed, 
such that interference (destructive or constructive)  will occur. 
Restricting phase space (ie. narrowing the bandwidth and sampling 
time)  leads to interference within the beam. This naturally leads to 
fluctuations that are proportional to intensity  (= wave noise).
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Origin of wave noise: coherence -- Young’s 2 slit experiment

Single Source :I∝V2 = '1 photon'

Two incoherent sources :I ∝2 V2( )= '2 photons'

Two coherent sources :I ∝ 2V( )2 = '0 to4 photons'



Photon arrival time: normalized probability of detecting a second 
photoelectron after interval t in a plane wave of linearly polarized light with 
Gaussian spectral profile of width Δν

 

(Mandel 1963). Exactly the same factor 
2 as in Young’s slits!

Origin of wave noise

Photon arrival times are 
correlated on timescales ~ 
1/ Δν, which naturally 
leads to fluctuations in the 
signal ∝

 

total flux, ie. 
fluctuations are amplified 
by constructive or 
destructive interference on 
timescales ~ 1/ Δν.



“Think then, of a stream of wave packets each about c/Δν
 

long, 
in a random sequence. There is a certain probability that two 
such trains accidentally overlap. When this occurs they 
interfere and one may find four photons, or none, or something 
in between as a result. It is proper to speak of interference in 
this situation because the conditions of the experiment are just 
such as will ensure that these photons are in the same quantum 
state. To such interference one may ascribe the ‘abnormal’ 
density fluctuations in any assemblage of bosons. 

Were we to carry out a similar experiment with a beam of 
electrons we should find a suppression of the normal 
fluctuations instead of an enhancement. The accidental 
overlapping wave trains are precisely the configurations 
excluded by the Pauli  principle.”

Purcell 1956, Nature, 178, 1449

Origin of wave noise III



RJ Wien

When is wave noise 
important? Photon 
occupation number 
at 2.7K

Wien: ns <1⇒rms∝ ns (countingstats)
RJ: ns >1⇒rms∝ ns (wavenoise)

Bν =
2hυ 3

c 2 ns

Δns
2 ≡ ns − ns( )2

= ns + ns
2

ns = eh ν s /k T −1( )−1



Photon occupation number: examples

CygnusA at 1.4GHz at  VLA :  TA =140K⇒
hν
k T

=0.0005

⇒ ns = (e
hν
kT -1)−1 =2000Hz−1 sec−1 ∴ wave noise dominated

Betelgeuse resolved by HST : TB = 3000K⇒ hν/kT= 8
⇒ns = 0.0003Hz−1 sec−1 ∴ 'counting noise'  dominated

Quasar at z = 4.7 with VLA : S1.4GHz =0.2mJy  (10-7  x CygA)
TA = 0.02mK⇒ hν /k T=3000 ∴ ns <<1
Why do we still assume wave noise dominates in sens. equ?
Answer :  TBG >  2.7K ensures ns > 1 always at cm wavelengths.

Bright radio source

Optical source

Faint radio source



“Even the feeble microwave background ensures that the occupation number at 
most radio frequencies is already high. In other words, even though the particular 
contribution to the signal that we seek is very very weak, it is already in a 
classical sea of noise and if there are benefits to be derived from retaining the 
associated aspects, we would be foolish to pass them up.” Radhakrishnan 1998

sn

100 GHz

1ns =

The sky is not dark in the radio!



In radio astronomy, the noise statistics are 
wave noise dominated, ie. rms fluctuations 
are proportional to the total power (ns ), 
and not the square root of the power (ns

1/2)

Wave noise: conclusions



Noise limit: quantum noise and coherent amplifiers

Uncertainty principle for photons :
ΔE Δt = h
ΔE = hν Δns

Δt =
Δϕ

ν2π
⇒ΔϕΔns =1 rad  Hz−1 sec−1

Coherent Amplifier :Δϕ <1rad ⇒Δns =1 photon Hz−1 sec−1

Phase conherent amplifier has minimum noise of ns =  1 photon Hz−1 sec−1

Phase coherent amplifier automatically puts signal 
into RJ regime => wave noise dominated

Note: phase coherent amplifier is not a detector



Quantum noise of coherent amplifier: nq = 1 Hz-1 s-1

ns >>1 => QN irrelevant, use 
phase conserving electrons

Adv: adding antennas doesn’t 
affect SNR per pair

Disadv: paid QN price

ns <<1 => QN disaster, use beam 
splitters, mirrors, and direct 
detectors

Adv: no receiver noise

Disadv: adding antenna lowers 
SNR per pair as N2

Coherent 
amplifiers

Mirrors + beam 
splitters

Direct detector: CCD



Quantum noise: Einstein Coefficients (eg. masers)

Stimulated emission=Bij     Spontaneous emission = Aij =
8πν 3 h

c3 Bij

Stimulated Absorption : Bij = Bji

Radiative Transfer : ∂I
∂x

=
hν

cΔν
Bijni − Bjinj[ ]I+ Aijni

hν
4πΔν

Stimulated
Spontaneous

=

hν
cΔν

Bijni I

hν
4 πΔν

Aijni

=
c2I

2hν 3

Iν →Bν =
2kν 2

c2 TB =
2k
λ2 TB

Stimulated
Spontaneous

=
k TB

hν
    

=>    Tmin =
hν
k



What’s all this about temperatures? Johnson-Nyquist

electronic noise of a resistor at TR



Johnson-Nyquist 
Noise

<V> = 0,  but <V2> ≠

 

0

T1 T2

Thermodynamic equil:  T1 = T2

“Statistical fluctuations of electric charge in all conductors produce random 
variations of the potential between the ends of the conductor…producing mean- 
square voltage” => white noise power, <V2>/R, radiated from resistor at TR 

• Transmission line electric field standing wave modes: ν

 

= c/2l, 2c/2l… Nc/2l…

• # modes (=degree freedom) in ν

 

+ Δν: ΔN = 2l Δν

 

/ c

• Therm. Equipartion law: energy/degree of freedom: ΔE = hν/(ehν/kT - 1) ~ kT   (RJ)

• Energy equivalent on line in Δν:  E = ΔE ΔN = (kT2lΔν) / c

• Transit time of line: t ~ l / c 

• average power transferred from each R to line in Δν

 

~ E/t = PR = kTR Δν



Johnson-Nyquist Noise

kB = 1.27 +/ 0.17 erg/K

• Noise power is strictly function of TR , not function of R or material…

• Dickey shows direct analogy with thermal radiation from Black Body

• Nyquist shows direct analogy with thermal motions of molecules in a gas

Thermal noise: 

<V2>/R = ‘white noise power’



Antenna Temperature

In radio astronomy, we reference power received from the 
sky, ground, or electronics, to noise power from a load 
(resistor) at temperature, TR = Johnson noise

Consider received power from a cosmic source, Psrc

• Psrc = Aeff Sν

 

Δν

 

erg s-1

• Equate to Johnson-Nyquist noise of resistor at TR : PR = kTR Δν

• ‘equivalent load’ due to source = antenna temperature, TA : 

kTA Δν

 

= Aeff Sν

 

Δν

 

=>   TA = Aeff Sν

 

/ k



Brightness Temperature

• Brightness temp = measure of surface brightness  (Jy/SR, Jy/beam, Jy/arcsec2)

•TB = temp of equivalent black body, Bν

 

, with surface brightness =  source 
surface brightness at ν:  Iν

 

= Sν

 

/ Ω

 

= Bν

 

= kTB / λ2

• TB = λ2 Sν

 

/ 2 k Ω

• TB = physical temperature for optically thick thermal object

• TA <= TB always  

Source size > beam TA = TB (2nd law therm.)

Source size < beam TA < TB

beam

source

telescope

TB

[Explains the fact that 
temperature in focal plane 
of optical telescope cannot 
exceed TB of a source]



Signal to noise and radiometry

• Limiting signal-to-noise (SNR): Standard deviation of the mean

• Wave noise (ns > 1):  noise per measurement = (variance)1/2 =  <ns >

=>  noise per measurement ∝

 

total power noise ∝

 

Tsys

• Recall, source signal = TA

• Or, inverting, and dividing by signal, can define ‘noise’ limit as:

ΔTlim  =
Tsys

#  independent measurements

SNRlim =  Signal 
Noise per measurement

 ×  #  of independent measurements

SNRlim =  TA

Tsys

 #  independent measurements



Number of independent measurements

How many independent measurements are made by single 
interferometer (pair ant) for total time, t, over  bandwidth, Δν?

Return to uncertainty relationships:

ΔEΔt = h

ΔE = hΔν

ΔνΔt = 1 

Δt = minimum time for independent measurement = 1/Δν

# independent measurements in t = t/Δt =  t Δν



General Fourier conjugate variable relationships

•Fourier conjugate variables, frequency -- time (or power spectrum in freq, 
autocorrelation in lag, eg.  Weiner-Khinchin theorem)

•If V(ν) is Gaussian of width Δν, then V(t ) is also Gaussian of width = Δt = 1/Δν

Δt =1/Δν

Δν

• Measurements of V(t) on timescales Δt < 1/Δν

 

are correlated, ie. not 
independent

• Restatement of Nyquist sampling theorem: maximum information is gained 
by sampling at ~ 1/ 2Δν. Nothing changes on shorter timescales. 



Response time of a bandpass filter

Vin (t) = δ(t)

Response time: Vout (t) ~ 1/Δν

Response of RLC 
(tuned) filter of 
bandwidth Δν

 

to 
impulse V(t) = 
δ(t) : decay time 
(‘ringing’) ~ 1/Δν

Δν Vout (t) ~ 1/Δν



Interferometric Radiometer Equation

ΔTlim =   
Tsys

Δν t
Interferometer pair:

Antenna temp equation: ΔTA = Aeff ΔSν

 

/ k

ΔSlim =   
kTsys

Aeff Δν t
Sensitivity for single interferometer:

Finally, for an array, the number of independent measurements at 
give time = number of pairs of antennas = NA (NA -1)/2

ΔSlim =   
kTsys

Aeff NA (NA −1)Δν t

Can be generalized easily to: # polarizations,  inhomogeneous arrays 
(Ai , Ti ), digital efficiency terms…



Fun with noise: Wave noise vs. counting statistics

• Received source power ∝
 

telescope area = Aeff

•Optical telescopes:  ns < 1 => rms ~ ns
1/2

ns ∝
 

Aeff => SNR = signal/rms ∝
 

(Aeff )1/2

•Radio telescopes: ns > 1 => rms ~ ns

ns ∝
 

Tsys = TRx + TA + TBG + Tspill   

Faint source: TA << (TRx + TBG + Tspill) => rms dictated 
completely by receiver (independent of Aeff) => SNR ∝ Aeff

Bright source: Tsys ~ TA ∝ Aeff  =>  rms ∝ Aeff => SNR 
independent of Aeff



Quantum noise and the 2 slit paradox

Which slit does the photon enter?  With a phase conserving amplifier it seems one 
could both detect the photon and ‘build-up’ the interference pattern (which we 
know can’t be correct). But quantum noise dictates that the amplifier introduces 1 
photon/mode noise, such that:  

Itot = 1 +/- 1

and we still cannot tell which slit the photon came through!



Intensity Interferometry: rectifying signal with square-law detector (‘photon 
counter’) destroys phase information. Cross correlation of intensities still results in a finite 
correlation, proportional to the square of E-field correlation coefficient as measured by a 
‘normal’ interferometer. Exact same phenomenon as increased correlation for t < 1/Δν

 
in lag-space above, ie. correlation of the wave noise itself  = ‘Brown and Twiss effect’

⎥⎦
⎤

⎢⎣
⎡ += 2

21 2
112 γτNNNc γ

 

= correlation coefficient

Disadvantage: No visibility phase information

lower SNR

Advantage: timescale = 1/Δν

 

(not 1/ν)

=> insensitive to poor optics, ‘seeing’

• Voltages correlate on timescales ~ 1/ν, with 
correlation coef, γ

• Intensities correlate on timescales ~ 1/Δν, with 
correlation coef, γ2



Srms =
2kTsys

Aeff NA (NA −1)tintΔν

Interferometric Radiometer Equation

• Tsys = wave noise for photons (RJ): rms ∝
 

total power

• Aeff ,kB = Johnson-Nyquist noise + antenna temp 
definition 

• tΔν
 

= # independent measurements of TA /Tsys per pair 
of antennas

• NA = # indep. meas. for array, or can be folded into 
Aeff
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