Future Radio Interferometers

Jim Ulvestad National Radio Astronomy Observatory

Radio Interferometer Status in 2012

- ALMA
 - Covers much of 80 GHz-1 THz band, with collecting area of about 50% of VLA, for a cost exceeding \$1 billion
 - Higher frequencies \rightarrow infrared
 - More collecting area \rightarrow too expensive
- EVLA
 - Complete coverage of 1-50 GHz band
 - Lower frequencies are feasible
 - More collecting area might be feasible
 - Longer baselines are feasible
- VLBA
 - Longer baselines from space
 - Higher bandwidth
 - Replace with more collecting area?

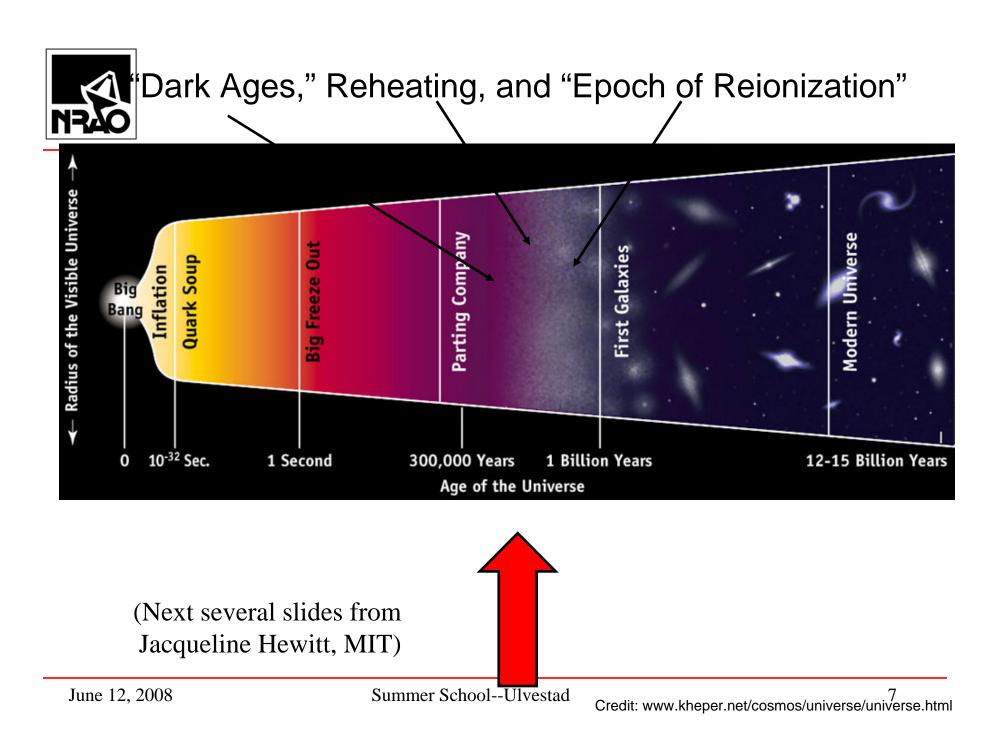
- Probe epoch of reionization and formation of first galaxies
- Study galaxy evolution over the history of the universe
- Characterize Dark Energy
- Strong gravity
- "Cradle of life"—galaxy, star, planet formation
- Time-domain astronomy

Survey telescopes will become more important, not just telescopes doing individual pointings

- SKA Program originally aimed at building a meter/cm wavelength telescope with 1 km² of collecting area
 - Initially an HI telescope, focused on frequency range near 1 GHz
 - Expanded to multiple telescopes covering frequency range from 100 MHz to 25 GHz, to address five key science areas

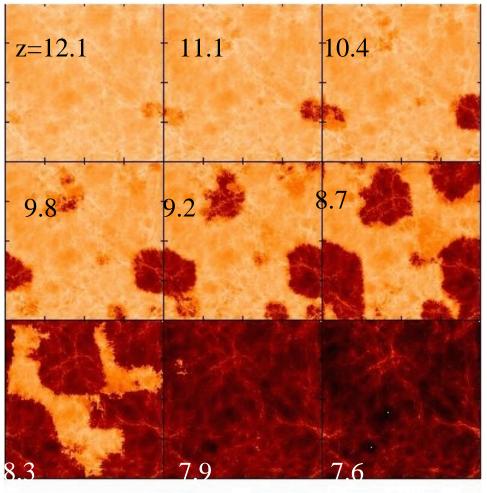
• SKA-low

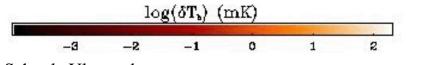
~80-300 MHz, primarily Epoch of Reionization


- SKA-mid
 - ~300 MHz-few GHz, primarily galaxy evolution (HI telescope) and Dark Energy; also gravity
 - Note: 1 km² is nearly 6000 15m dishes!!
- SKA-high
 - Few GHz to 25-50 GHz, primarily cradle of life (star and planet formation, galaxy formation)
- "Top-down" or "bottom-up" approach??

Hypothethical SKA

Summer School--Ulvestad




Reionization of Universe

Bandwidth = 100 kHz Box size = 10/h comoving Mpc

Fluctuations are about 10 mK

Furlanetto, Sokasian, Hernquist 2004

June 12, 2008

Summer School--Ulvestad

Challenges to EOR Detection

- Sky noise—systematics, collecting area
- Foregrounds—systematics, stability
- RFI—data excision
- Ionospheric fluctuations—time-dependent calibration
- Field of view larger than isoplanatic patch—direction-

dependent calibration

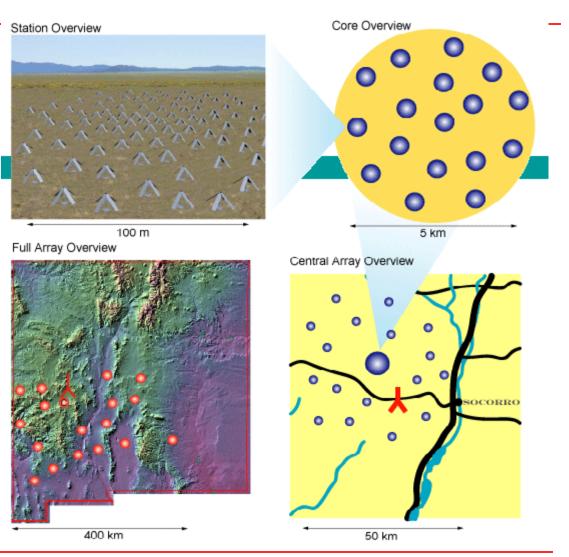
• Flat sky approximation fails—efficient 3-D imaging algorithms

Require high speed computation to address - affordable only now

First-Generation EOR Experiments: Arrays Resolution is ~few arcminutes or better

Expt	Freq MHz	Red- shift	Area (sq m)	FOV (deg)	N (sta- tions)	Status
GMRT Core	100-200	6-13	24,000		15	RFI Mitigation
21CMA	50-200	6-27	25,000		80	Complete
LOFAR Core	30-90 110-230	17-46 6-11	15,000	2 X 4 beams Dual-pol	40	Constr.
MWA	80-240	5-17	8000	35 Dual-pol	500	Constr.
PAPER	130-200	6-10	~500	90 Dual-pol	~100 (to grow?)	Proto- typing

Note: 11, effects LOFAR descopesino early st2008


- Will be 500 tiles of 16 antennas in Western Australia
- 32 tiles currently deployed

Long Wavelength Array

- LWA is being developed by Southwest
 Consortium
 (UNM, NRL, LANL, UTex)
- Radio galaxies, SNe, transients, ionosphere

- For survey telescopes, the Figure of Merit for performance becomes survey speed, not just point-source sensitivity
- Raw point-source sensitivity: How low is the detection threshold in a fixed period of time?

FOM ~ $\Delta v A_{eff}/T_{sys}$

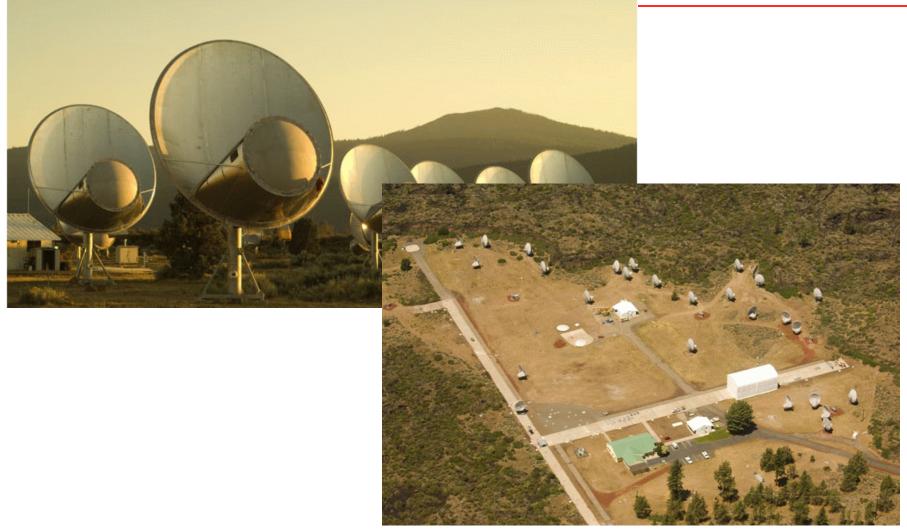
• Survey speed: How much volume can be surveyed to a given flux level in a fixed period of time?

FOM ~ $\Delta v (N_{FoV} \Omega_{FoV}) (A_{eff}/T_{sys})^2$

• Optimizing for number of sources, or transient sources, gives different Figures of Merit

Practical FOM ~ (Technical FOM)/Cost

- Cost equation depends on antenna price, cost of reducing system temperature, cost of adding field of view, cost of data processing, power costs, etc.
 - E.g., in the limit of tens of thousands of small antennas (maximizing field of view), dominant cost may be the cost of the power required to do all the data processing!

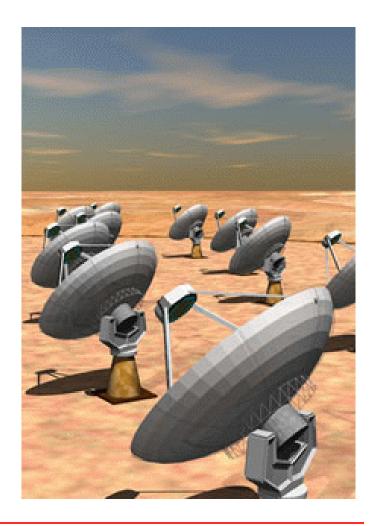

- Data transport and processing: EVLA, e-MERLIN, and low-frequency arrays
- Inexpensive collecting area: Allen Telescope Array (ATA), MeerKAT
- Wide fields of view: Australian SKA Pathfinder (ASKAP), low-frequency arrays, focal plane arrays on single dishes
- Science pathfinders:
 - SKA-high: EVLA, e-MERLIN, ATA
 - SKA-mid: ATA, MeerKAT, ASKAP, Arecibo/ALFA
 - SKA-low: MWA, LWA, LOFAR, PAPER

- Allen Telescope Array, Northern California
 - 42 6m antennas, hope to grow to 350
 - Single-piece hydroformed dishes
 - Single-frequency feed, 0.5-11 GHz
 - SETI searches
 - Time-domain astronomy
 - 2-4 beams in sky

ATA Photos

Summer School--Ulvestad

Mid-frequency Telescopes-2


- MeerKAT, South Africa
 - 20-80 12m antennas
 - Single-pixel feed, 700-1700 MHz
 - Composite dishes
 - Completion in 2012?
 - Prototype 15m
 composite dish shown
 here

Mid-frequency Telescopes-3

- ASKAP, Western Australia
 - 30-45 12m dishes
 - Focal plane arrays
 - 3-axis dish—primary reflector rotates with the sky in order to keep sidelobes fixed
 - 700-1800 MHz
 - Completion in 2012?

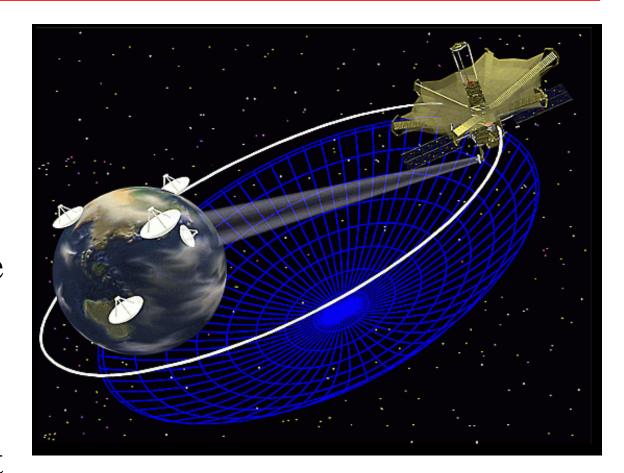
- Phase I—Build ~10% of SKA collecting area in 4 yr (finish in 2016) at cost of ~300M€
 - Wildly optimistic in technology/funding forecast
- Phase II—Build "complete" SKA at frequencies up to 10 GHz (finish in 2020) with total sunk cost (including Phase I) of 1500M€

- Inadequate contingency, already descoped

• Phase III—SKA-high deferred indefinitely

Predictions

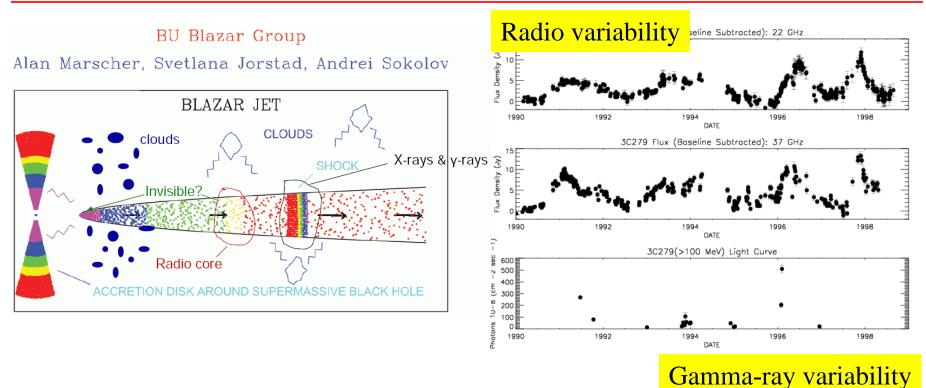
- Low-frequency arrays may detect Epoch of Reionization within a few years
 - If successful, possible development of much more collecting area by 2020
- Mid- and high-frequency "SKA" will become an umbrella term embracing efforts to add significant collecting area for cm-wave radio interferometry
 - This will be an activity spanning several decades


Space VLBI

- Angular resolution is not necessarily limited by the diameter of the Earth
- First Space VLBI demonstrations in the 1980s
- First dedicated Space VLBI mission, VSOP, was launched in 1997, operating at 1.6 and 5 GHz

Space VLBI Concept

- Use
 spacecraft
 orbit to
 synthesize an
 aperture
 larger than the
 Earth
- Imaging is difficult with one spacecraft



VSOP-2

- Japanese-led mission approved for launch in 2012
- Apogee height of 25,000 km gives 30,000 km baselines
- 9-meter space telescope operating at 8, 22, and 43 GHz
- Key science: gamma-ray blazars, water megamasers

Gamma-ray blazars

- Blazars are active galaxies with relativistic jets pointing at us
- Extreme variability
- Source of gamma-ray emission?

VSOP-2 + GLAST

- GLAST launched yesterday
- Combine with VSOP-2 imaging in 2013 to model gamma-ray production

http://www.youtube.com/watch?v=MmIVn2TrJcU