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Introduction

• Spectral line observers use many channels of width δν, over a 
total bandwidth Δν. Why?

• Science driven: science depends on frequency (spectroscopy)
– Emission and absorption lines, and their Doppler shifts
– Slope across continuum bandwidth

• Technical reasons: science does not depend on frequency 
(pseudo-continuum)
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Spectroscopy

• Need high spectral resolution to 
resolve spectral features

– Example: SiO emission from a 
protostellar jet imaged with the 
VLA (Chandler & Richer 2001).

• High resolutions over large 
bandwidths are useful for e.g., 
doppler shifts and line searches 
=> many channels desirable!
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Pseudo-continuum

• Science does not depend on frequency, but using spectral line 
mode is favorable to correct for some instrumental responses:

– Avoid limitations of bandwidth smearing
– Avoid limitations of beam smearing
– Avoid problems due to atmospheric changes as a function of

frequency
– Avoid problems due to signal transmission effects as a function of 

frequency

• A spectral line mode also allows editing for unwanted, narrow-
band interference.
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Instrument response: beam smearing

• θPB = λ/D

• Band covers λ1 to λ2

⇒ θPB changes by λ1/λ2

• More important at longer 
wavelengths:
– VLA 20cm: 1.04
– VLA 2cm: 1.003
– EVLA 20cm: 2.0
– ALMA 1mm: 1.03

F. Owen

λ1

2λ1
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Instrument response: bandwidth smearing

• Also called chromatic aberration

• Fringe spacing = λ/B

• Band covers λ1 to λ2
– Fringe spacings change by λ1/λ2

– uv samples smeared radially
– More important in larger 

configurations, and for lower 
frequencies

• Huge effects for EVLA

VLA-A 20cm: 1.04

Pseudo-continuum uses smaller 
ranges to be averaged later.
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Instrument frequency response

• Responses of antenna receiver, 
feed, IF transmission lines, 
electronics are a function of 
frequency.

Tsys @ 7mm VLA

VLBA

• Phase slopes (delays) can 
be introduced by incorrect 
clocks or positions.
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Atmosphere changes with frequency

• Atmospheric transmission, 
phase (delay), and Faraday 
rotation are functions of 
frequency

– Generally only important 
over very wide bandwidths, 
or near atmospheric lines

– An issue for ALMA

O2 H2O

Chajnantor pvw = 1mm

VLA pvw = 4mm
= depth of 
H2O if 
converted 
to liquid
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Radio Frequency Interference (RFI)

• Avoid known RFI if possible, e.g. by constraining your bandwidth.
• Possible in some cases but not always.

RFI at the VLA, 1.2-1.8 GHz

VLA continuum 
bandwidth: 50 MHz

EVLA: 1.2-2 GHz in one go

RFI at MK, 1.6 GHz
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Observations: data editing and calibration

• Not fundamentally different from continuum observations, but a 
few additional items to consider:

– Presence of RFI (data flagging)
– Bandpass calibration
– Doppler corrections
– Correlator setup
– Larger data sets
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Editing spectral line data

• Start with identifying problems affecting all channels, by using a 
frequency averaged 'Channel 0' data set.
– Has better SNR.
– Copy flag table to the line data.

• Continue with checking the line data for narrow-band RFI that 
may not show up in averaged data.
– Channel by channel impractical, instead identify features by using 

cross-power spectra (POSSM).
– Is it limited in time? Limited to specific telescope (VLBI) or baseline 

length (VLA)?
– Flag based on the feature using SPFLG, EDITR, TVFLG, WIPER.



12

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Example POSSM scalar averaged spectra VLA

• Note: avoid excessive frequency dependent editing, since this 
introduces changes in the u,v - coverage across the band.
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Spectral response

• For spectroscopy in an XF correlator (VLA, EVLA) additional lags
are introduced and the correlation function is measured for a 
large number of lags.

– The FFT gives the spectrum.

• However, we don't have infinitely large correlators and infinite 
amount of time, so we don't measure an infinite number of Fourier 
components.

– A finite number or lags means a truncated lag spectrum, which 
corresponds to multiplying the true spectrum by a box function.

– The spectral response is the FT of the box, which for an XF 
correlator is a sinc(πx) function with nulls spaced by the channel 
separation: 22% sidelobes!
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Spectral response: Gibb's ringing

• Thus, this produces a "ringing" in frequency called the Gibbs 
phenomenon.

• Occurs at sharp transitions:
– Narrow banded spectral lines (masers, RFI)
– Band edges
– Baseband (zero frequency)

"Ideal" 
spectrum

Measured 
spectrum

Amp

Frequency

Amp

Frequency
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Gibb's ringing: remedies

• Increase the number of 
lags, or channels.
– Oscillations reduce to ~2% 

at channel 20, so discard 
affected channels.

– Works for band-edges, but 
not for spectral features.

• Smooth the data in 
frequency (i.e., taper the lag 
spectrum)
– Usually Hanning smoothing 

is applied, reducing 
sidelobes to <3%.
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Bandpass calibration

• We need the total response of the instrument to determine the true 
visibilities from the observed:

Vi j(t,ν)obs = Vi j(t,ν)Gi j(t)

• The bandpass shape is a function of frequency, and is mostly due
to electronics of individual antennas.
– Usually varies slowly with time, so we can break the complex gain 

Gij(t) into a fast varying frequency independent part, G'
ij(t,ν), and a 

slowly varying frequency dependent part Bij(t,ν):

Vi j(t,ν)obs = Vi j(t,ν)G'
i j(t)Bi j(t,ν)

• G'
i j(t) is calibrated as for continuum, and the process of 

determining Bi j(t,ν) is the bandpass calibration.
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Why bandpass calibration is important

• Important to be able to detect and analyze spectral features:

– Frequency dependent amplitude errors limit the ability of detecting 
weak emission and absorption lines.

– Frequency dependent phase errors can lead to spatial offsets 
between spectral features, imitating doppler motions.

– Frequency dependent amplitude errors can imitate changes in line 
structures.

• For pseudo-continuum, the dynamic range of final image is 
limited by the bandpass quality.
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Example ideal and real bandpass

• In the bandpass calibration we want to correct for the offset of 
the real bandpass from the ideal one (amp=1, phase=0).

• The bandpass is the relative gain of an antenna/baseline as a 
function of frequency.

Amp Amp

Phase Phase

Ideal Real
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How BP calibration is performed

• To compute the bandpass correction, a strong continuum 
calibrator is observed at least once.

• The most commonly used method is analogous to channel by 
channel self-calibration (AIPS task BPASS)
– The calibrator data is divided by a source model or continuum, 

which removes atmospheric and source structure effects.
– Most frequency dependence is antenna based, and the antenna-

based gains are solved for as free parameters.

• This requires a high SNR, so what is a good choice of a BP 
calibrator?
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How to select a BP calibrator

• Select a continuum source with:
– High SNR in each channel
– Intrinsically flat spectrum
– No spectral lines

• Not required to be a point source, 
but helpful since the SNR will be the 
same in the BP solution for all 
baselines.

Too noisy

Spectral feature

Strong, no lines: OK

Spectra of three 
potential calibrators. 

Only the bottom one is 
ok.
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How long to observe a BP calibrator

• Applying the BP calibration means that every complex visibility 
spectrum will be divided by a complex bandpass, so noise from 
the bandpass will degrade all data.

• Need to spend enough time on the BP calibrator so that 
SNRBPcal > SNRtarget. A good rule of thumb is to use

SNRBPcal > 3×SNRtarget

which then results in an integration time:

tBPcal = 3×(Starget /SBPcal)2 ttarget
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Assessing quality of BP calibration

φ

Amp

φ

Amp

• Examples of good-quality bandpass 
solutions for 2 antennas.

• Solutions should look comparable for 
all antennas.

• Mean amplitude ~1 across useable 
portion of the band.

• No sharp variations in amplitude and 
phase; variations are not dominated by 
noise.

• Phase slope across the band indicates 
residual delay error.

L. Matthews
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Bad quality bandpass solutions four 4 antennas

• Amplitude has different normalization for different antennas
• Noise levels are high, and are different for different antennas

L. Matthews
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Bandpass quality: apply to a continuum source

• Before accepting the BP 
solutions, apply to a 
continuum source and use 
cross-correlation spectrum to 
check:

– That phases are flat

– That amplitudes are constant

– That the noise is not 
increased by applying the BP

Before bandpass calibration

After bandpass calibration
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Spectral line bandpass: get it right!

• G'ij(t) and Bij(ν,t) are separable, and multiplicative errors in G'ij(t) 
(including phase and gain calibration errors) can be reduced by 
subtracting structure in line-free channels. Residual errors will 
scale with the peak remaining flux.

• This is not true for Bij(ν,t) - any errors in the bandpass calibration 
will always be in your data. Residual errors will scale as 
continuum fluxes in your observed field.
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Doppler tracking

• Observing from the surface of the Earth, our velocity with
respect to astronomical sources is not constant in time or 
direction.

• Doppler tracking can be applied in real time to track a spectral 
line in a given reference frame, and for a given velocity 
definition:

Vradio/c = (νrest−νobs)/νrest

Vopt/c = (νrest−νobs)/νobs
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Rest frames

Galactocentric< 300 km/sGalactic rotation

Local Standard of Rest< 20 km/sSun peculiar motion

SS Barycentric (~Helioc)< 0.012 km/sSun/planets barycenter

Heliocentric< 30 km/sEarth around Sun

E/M Barycentric< 0.013 km/sEarth/Moon barycenter

Geocentric< 0.5 km/sEarth rotation

Topocentric0 km/sNothing

Rest frameAmplitudeCorrect for

Start with the topocentric frame, the successively transform to other frames. 
Transformations standardized by IAU.
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Doppler tracking

• However, the bandpass shape is really a function of frequency, 
not velocity!

– Applying doppler tracking will introduce a time-dependent and 
position dependent frequency shift.

– If you doppler track your BP calibrator to the same velocity as your 
source, it will be observed at a different sky frequency!

– In this case, apply corrections during post-processing instead.

– Given that wider bandwidths are now being used (EVLA, SMA, 
ALMA) online doppler tracking is unlikely to be used in the future 
(tracking only correct for a single frequency).
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Continuum subtraction

• Spectral line data often contains continuum emission, either 
from the target or from nearby sources in the field of view.
– This emission complicates the detection and analysis of line data

Spectral line cube with two continuum 
sources (structure independent of 
frequency) and one spectral line source.

Roelfsma 1989
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Continuum subtraction: basic concept

• Use channels with no line features to model the continuum

• Subtract this continuum model from all channels
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Why do continuum subtraction?

• Spectral lines easier to see, especially weak ones.

• Easier to compare the line emission between channels.

• Deconvolution is non-linear: can give different results for 
different channels since u,v - coverage and noise differs (results 
usually better if line is deconvolved separately).

• If continuum sources exists far from the phase center, we don't 
need to deconvolve a large field of view to properly account for 
their sidelobes.

To remove the continuum, different methods are available: 
visibility based, image based, or a combination thereof.
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Visibility based continuum subtraction (UVLIN)

• A low order polynomial is fit to a group of line free channels in 
each visibility spectrum, the polynomial is then subtracted from 
whole spectrum.

• Advantages:
– Fast, easy, robust
– Corrects for spectral index slopes across spectrum
– Can do flagging automatically (based on residuals on baselines)
– Can produce a continuum data set

• Restrictions:
– Channels used in fitting must be line free (a visibility contains 

emission from all spatial scales)
– Only works well over small field of view θ << θs ν / Δνtot
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UVLIN restriction: small field of view

• A consequence of the visibility of 
a source being a sinusoidal 
function

• For a source at distance l from 
phase center observed on 
baseline b:

V = cos (2πνl/c) + i sin(2πνl/c)

This is linear only over a small 
range of ν and for small b and l.
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Image based continuum subtraction (IMLIN)

• Fit and subtract a low order polynomial fit to the line free part of 
the spectrum measured at each spatial pixel in cube.

• Advantages:
– Fast, easy, robust to spectral index variations
– Better at removing point sources far away from phase center 

(Cornwell, Uson and Haddad 1992).
– Can be used with few line free channels.

• Restrictions:
– Can't flag data since it works in the image plane.
– Line and continuum must be simultaneously deconvolved.
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Visualizing spectral line data

• After mapping all channels in the data set, we have a spectral 
line data cube.

• The cube is 3-dimensional (RA, Dec, Velocity). To visualize the
information we usually make 1-D or 2-D projections:

– Line profiles (1-D slices along velocity axis)
– Channel maps (2-D slices along velocity axis)
– Position-velocity plots (slices along spatial dimension)
– Moment maps (integration along the velocity axis)
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Example: line profiles

• Line profiles shows changes in 
line shape, width and depth.

• Right: EVN+MERLIN 1667 MHz 
OH maser emission and 
absorption spectra in IIIZw35.
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Example: channel maps

• Channel maps show how the 
spatial distribution of the line 
feature changes with 
frequency/velocity.

• Right: Contours continuum 
emission, grey scale 1667 MHz 
OH line emission in IIIZw35.
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Example 2-D model:  rotating disk

-Vcir sin i

-Vcir sin i cosΘ

Θ

+Vcir sin i cosΘ

+Vcir sin i
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Example: position-velocity plots

• PV-diagrams shows, for 
example, the line emission 
velocity as a function of radius. 
Here along a line through the 
dynamical center of the galaxy

Distance along slice

V
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  p
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e

Velocity
Right Ascension
Declination

↑ ↑
↑

• Greyscale & contours 
convey intensity of the 
emission.

L. Matthews
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Moment analysis
• You might want to derive parameters such as integrated line intensity,

centroid velocity of components and line widths - all as functions of 
positions. Estimate using the moments of the line profile:

Total intensity
(Moment 0)

Intensity-weighted velocity
(Moment 1)

Intensity-weighted velocity
dispersion

(Moment 2)
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Moment analysis
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Moment maps

Moment 0                           Moment 1                  Moment 2 
(Total Intensity)               (Velocity Field)             (Velocity Dispersion)
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Moment maps: caution!

• Moments sensitive to noise so clipping is required
– Higher order moments depend on lower ones so progressively noisier.

• Hard to interpret correctly:
– Both emission and absorption may be present, emission may be double 

peaked.
– Biased towards regions of high intensity.
– Complicated error estimates: number or channels with real emission 

used in moment computation will greatly change across the image.

• Use as guide for investigating features, or to compare with other λ.

• Alternatives…?
– Gaussian fitting for simple line profiles.
– Maxmaps shows emission distribution.
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Visualizing spectral line data: 3-D rendering

Display produced using the 'xray' program in the karma software 
package (http://www.atnf.csiro.au/computing/software/karma/)

Velocity
Right Ascension
Declination

↑ ↑
↑

L. Matthews


