

Extragalactic Science

Jim Condon

Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008

Why Synthesis Imaging?

Angular resolution can be specified by the observer (to reduce "confusion," match angular scales of the source or multiwavelength data -- but trade off surface-brightness sensitivity)

Extremely accurate absolute astrometry (high angular resolution, clocks instead of rulers, no plane-parallel refraction)

High dynamic range via deconvolution and self-calibration "fixing" telescope

High sensitivity via long integrations, suppression of "baseline" errors and RFI

(Figures from Brunthaler et al. 2005, Science, 307, 1440)

"It's turtles all the way down"

Flux density versus luminosity of radio sources

- Evolution 10X in luminosity → few nearby sources,
 <z> ~ 1
- "shell" $\rightarrow L \propto S$
- AGNs at high L, S
- Star-forming galaxies at low L, S

High Luminosity: Relativistic Jets and Lobes from AGN 6

Centaurus A at radio (purple), optical, and X-ray wavelengths

Jet Energy via Radio Bubbles in Hot Cluster Gas

 $6 \times 10^{61} \text{ ergs} \sim 3 \times 10^7 \text{ solar masses } \times \text{ c}^2 \text{ (McNamara et al. 2005, Nature, 433, 45)}$

Resolution and Surface-brightness Sensitivity

Superluminal Motion in Compact Jets

Resolving the circumnuclear disk in NGC 4258 and directly measuring the black-hole mass

Beating Confusion

NVSS (45 arcsec) grayscale under GB 300-ft (12 arcmin) contours

"RMS" confusion $\sigma_c \approx 0.2 \ v^{-0.7} \ \theta^2$ where σ is in mJy/beam, v is in GHz, and θ is in arcmin

Low Luminosity: AGN+Starbursts

 θ = 5 arcsec σ = 23 mJy/beam (σ_c ~ 1 mJy/beam)

Low Luminosity: Star-forming Galaxies

SNe and GRBs

VLBA/HSA Image of the Starburst Nuclei in Arp 220

Evolution of star formation

- Radio "Madau diagram"
- Free from dust extinction

Star Formation at High Redshift

Primordial Starbursts

Radio Spectral Lines: Cold Gas

EVLA and ALMA

- Continuous frequency coverage from 1 GHz to 50 GHz
- Detect CO at almost any redshift
- Study excitation of star-forming gas in distant galaxies

The Most Distant Quasar

- VLA image of CO (4-3) from the first known star formation
 - Redshifted to 46 GHz

 Artist's conception of disk of molecules and dust

Geometric Distances, H₀, and Dark Energy

Preliminary

Properties of UGC 3789 Maser Disk

R $\sim 0.09 - 0.20 \,\mathrm{pc} \, (0.40 - 0.87 \,\mathrm{mas})$

V ~ 750 - 450 km/s

 $M_{bh} \sim 1.2 \times 10^7 M_{sun}$

a $\sim 3.6 \text{ km s}^{-1} \text{ yr}^{-1} \text{ (mean value)}$

D ~ 51 Mpc (15%)

 $H_0 \sim 64 \text{ km s}^{-1} \text{ Mpc}^{-1}$

The End...

...NOT!

