

Tenth Synthesis Imaging Summer School University of New Mexico, June 13-20, 2006

What is Sensitivity & Why Should You Care?

- · Measure of weakest detectable emission
- Important throughout research program
 - Sound observing proposal
 - Sensible error analysis in journal
- Expressed in units involving Janskys
 - Unit for interferometer is Jansky (Jy)
 - Unit for synthesis image is Jy beam⁻¹
 - 1 Jy = 10^{-26} W m⁻² Hz⁻¹ = 10^{-23} erg s⁻¹ cm⁻² Hz⁻¹
- Common current units: milliJy, microJy
- Common future units: nanoJy

Measures of Antenna Performance System Temperature Point at blank sky. What is received power *P*? Write *P* as equivalent temperature *T* of matched termination at receiver input Rayleigh-Jeans limit to Planck law *P* = *k*_B × *T* × Δν Boltzmann constant *k*_B Observing bandwidth Δν Amplify *P* by *g*² where *g* is voltage gain noise power P_N = g² × k_B × T_{sys} × Δν *T*_{sys} includes cosmic background, sky, receiver, ground ... Position and time dependence

4

6

Interferometer Sensitivity	8
Real Correlator - 1	
 Simple correlator with single real output that is product of voltages from antennas <i>j</i>,<i>i</i> SEFD_i = T_{sysi} / K_i and SEFD_j = T_{sysj} / K_j Each antenna collects bandwidth Δv 	
Interferometer built from these	
antennas has – Accumulation time τ_{acc} , system efficiency η_s – Source, system noise powers imply sensitivity ΔS_{ii}	
• Weak source limit - $S \ll SEFD_i$ - $S \ll SEFD_i$ - $S \ll SEFD_i$ $\Delta S_{ij} = \frac{1}{\eta_s} \times \sqrt{\frac{SEFD_i \times SEFD_j}{2 \times \Delta v \times \tau_{acc}}}$	

Interferometer Sensitivity

Real Correlator - 2

• For $SEFD_i = SEFD_i = SEFD$ drop subscripts

$$\Delta S = \frac{1}{\eta_s} \times \frac{SEFD}{\sqrt{2 \times \Delta v \times \tau_{acc}}}$$

– Units Jy

- Interferometer system efficiency η_s
 - Accounts for electronics, digital losses
 - See instrument documentation

0.

0.4 P(50.3

5

Measured Amplitude

- Measured visibility amplitude $S_m = \sqrt{S_R^2 + S_I^2}$ - Standard deviation (s.d.) of S_R or S_I is ΔS
- True visibility amplitude S
- Probability $Pr(S_m/\Delta S)$
 - Figure 9-2
 - Behavior with true $S/\Delta S$
 - High: Gaussian
 - Zero: Rayleigh
 - Low: Rice. S_m gives biased estimate of S.

Image Sensitivity

Single Polarization

- Simplest weighting case where visibility samples
 SEFD
 - Have same interferometer sensitivities $\Delta S =$ $\eta_s \wedge \sqrt{2 \times \Delta \nu \times \tau_{acc}}$
 - Have same signal-to-noise ratios w
 - Combined with natural weight (W=1), no taper (T=1)
- Image sensitivity is s.d. of mean of L samples, each with s.d. ΔS , i.e., $\Delta I_m = \Delta S / \sqrt{L}$
 - **N** antennas, # of interferometers $\frac{1}{2} \times N \times (N-1)$
 - # of accumulation times t_{int}/τ_{acc}
 - $L = \frac{1}{2} \times N \times (N-1) \times (t_{int}/\tau_{acc})$

- So
$$\Delta I_m = \frac{1}{\eta_s} \times \frac{SEFD}{\sqrt{N \times (N-1) \times \Delta \nu \times t_{int}}}$$

