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2Plan for the lecture-I

● How do we go from the measurement of the 
coherence function (the Visibilities) to the images 
of the sky?

•  First half of the lecture:  Imaging
                 Measured Visibilities  <--> Dirty Image 

                                     
                                      <-->
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3Plan for the lecture-II

● Second half of the lecture:  Deconvolution
                       Dirty image  <--> Model of the sky

                           
                                 <-->
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4Imaging

● Interferometers are indirect imaging devices

● For small w (small max. baseline) or small field 
of view (l2 + m2 << 1) and P(l,m)~1, I(l,m) is 2D 
Fourier transform of V(u,v)

V ou , v⇔ I  l , m

V ou , v=∬ I  l , me2 [ulvm ] dl dm

V ou , v ,w=∬ P  l , m I  l , me2 [ ulvmw 1− l 2−m2−1 ] dl dm

1− l2−m2
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5Imaging: Ideal 2D Fourier relationship

    Ideal visibilities(V )                    True image(I )

                                    FT
                                 <-->

●  This is true ONLY if V is measured for all 
(u,v)!



Tenth  Synthesis Imaging Summer School, University of New Mexico, June 13-20, 2006

6Imaging: UV-plane sampling

● With limited number of antennas, the uv-plane 
is sampled at discrete points:

                      

                        =                           X

       VM                                  S                             Vo 

S u , v=∑k uk , vk

V M u , v=S u , vV o u , v
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7Convolution with the PSF
● Effect of sampling the uv-plane:

● Using the Convolution Theorem:

  The Dirty Image (Id) is the convolution of the True Image (Io) 
and the Dirty Beam/Point Spread Function (B)

                                  B = FT-1(S)

● In practice
          Id = B*Io + B*IN  where  IN = FT-1(Vis. Noise)

● To recover Io, we must deconvolve B from Id.  
The algorithm must also separate B*Io from B*IN.

I d  l , m=FT−1 [V ou , v S u , v]

I d  l , m=B  l , m∗I o l , m
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8
Convolution

= I(x0)B(x-xo) + I(x1)B(x-x1) + …

The PSF
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9The Dirty Image

                                              

                                                      FT
 The PSF                                       <-->                                       UV-coverage

                 

                              **
               

                                                                                                     The
                                                    -->                                           Dirty Image 
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10Making of the Dirty Image
● Fast Fourier Transform (FFT) is used for efficient 
Fourier transformation.  It however requires 
regularly spaced grid of data.

● Measured visibilities are irregularly sampled 
(along uv-tracks).

● Convolutional gridding is used to effectively 
interpolate the visibilities everywhere and then re-
sample them on a regular grid (the Gridding 
operation)

              VS= VM * C = (VoS) * C  => Id . FT-1(C)
● C is designed to have desirable properties in the 
image domain.
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11Dirty Beam: Interesting properties

● PSF is a weighted sum of cosines corresponding 
to the measured Fourier components:

Visibility weights (wi) are also gridded on a regular grid 
and FFT used to compute the Dirty Beam (or the PSF).

● The peak of the PSF is normalized to 1.0
● The 'main lobe' has a size dx ~ 1/umax  and 
dy~1/vmax

This is the 'diffraction limited' resolution (the Clean 
Beam) of the telescope.

B  l , m=
∑k W k cosuklv km

∑k W k
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12Dirty Beam: Interesting properties

● Side lobes extend indefinitely
● RMS ~ 1/N   where N = No. of antennas
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13Close-in side lobes of the PSF

● Close-in side lobs of the PSF are controlled by 
the uv-coverage envelope.

  E.g., if the envelop is a circle, the side lobes near the 
main lobe must be similar to the FT of a circle: Bessel 
function/Radius
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14Close-in side lobes: VLA uv-coverage
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15PSF forming: Weighting...

● Weighting function (Wk) can be chosen to 
modify the side lobes

● Natural Weighting

              Wk=1/σk
2   where σk

2  is the RMS noise

● Best RMS across the image.

● Large scales (smaller baselines) have higher 
weights.

● Effective resolution less than the inverse of the 
longest baseline.

B  l , m=
∑k W k cosuklv km

∑k W k
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16...Weighting...

● Uniform weighting

Wk=1/ρ(uk,vk)   where ρ(uk,vk) is the density of 
uv-points in the kth cell.

● Short baselines (large scale features in the 
image) are weighted down.

● Relatively better resolution

–Increases the RMS noise.
● Super uniform weighting:

    Consider density over larger region.

    Minimize side lobes locally.
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17...Weighting

● Robust/Briggs weighting:

           Wk  =  1/[S ρ(uk ,vk) +σk
2]

● Parameterized filter – allows continuous 
variation between optimal resolution (uniform 
weighting) and optimal noise (natural 
weighting).
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18Examples of weighting
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19PSF Forming: Tapering

● The PSF can be further controlled by applying a 
tapering function on the weights (e.g. such that 
the weights smoothly go to zero beyond the 
maximum baseline).

                     W'k=T(uk,vk) Wk(uk,vk)

● Bottom line on weighting/tapering:

These help a bit, but imaging quality is limited 
by the deconvolution process!
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20The missing information

● As seen earlier, not all parts of the uv-plane are 
sampled – the 'invisible distribution'

1. “Central hole” below umin and vmin:
- Image plane effect: Total integrated 

power is not measured.
- Upper limit on the largest scale in the 

image plane. 
2. No measurements beyond umax and vmax:
     - Size of the main lobe of the PSF is finite 
        (finite resolution).
3. Holes in the uv-plane:
      - Contribute to the side lobes of the PSF.
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21More on missing information

● Missing 'central hole' means that the total flux, 
integrated over the entire image is zero.

● Total flux for scales corresponding to the Fourier 
components between umax and umin can be 
measured.

➢ In the presence of extended emission, the observations 
must be designed keeping in mind: 

➢ the required resolution ==> maximum baseline

➢ the largest scale to be reliably reconstructed ==> 
minimum baseline 

V u=0, v=0=∬ I d  l , m dl dm=0
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22Recovering the missing information

● For information beyond the max. baseline, one 
requires extrapolation.  That's unphysical 
(unconstrained).

● Information corresponding to the “central hole”: 
possible, but difficult (need extra information).

● Information corresponding to the uv-holes: requires 
interpolation.  The measurements provide constraints 
– hence possible.  But non-linear methods necessary.

 

  Deconvolution = interpolation in the visibility 
plane.

If Z is the unmeasured distribution, then B*Z=0.   If IM is 
a solution to Id=B*IM, then so is IM + αZ for any value of α.
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23Prior knowledge about the sky

● What can we assume about the sky emission:

     1. Sky does not look like cosine waves

     2. Sky brightness is positive (but there are exceptions)

     3. Sky is a collection of point sources (weak assertion)

     4. Sky could be smooth

     5. Sky is mostly blank (sometimes justifies “boxed”

         deconvolution)

● Non-linear deconvolution algorithms search for 
a model image IM such that the residual 
visibilities VR=Vo-VM  are minimized, subject to 
the constraints given by the (assumed) prior 
knowledge.
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24Small digression: Vector notation

● Let 
A = Measurement matrix to go from the image domain to 
the visibility domain (the measurement domain).

    I  = Vector of the image pixel values

    V = Vector of visibilities

    B = Operator (matrix) for convolution with the PSF

    N = The noise vector

● Then, 
         Id = BIo + BIN   where BIN = ATAN
               VM = AIM    and   Vo = AIo + N
               VR = Vo – AIM
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25Some observations

● A is rectangular (not square) and is a collection of 
sines and cosines corresponding to only the 
measured Fourier components.

     A  is singular ==> A-1 does not exist
     IM=A-1VM not possible ==> non-linear methods  
     needed

● N is independent gaussian random process.  
Noise in the image domain = BIN

Pixel-to-pixel noise in the image is not 
independent
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26...more observations

● For successful recovery of Io given Id, prior 
knowledge must fundamentally separate BIo 
and BIN.

● χ2 is the optimal estimator.  Deconvolution then 
is equivalent to:

 Deconvolution is equivalent to function minimization

● Algorithms differ in the parameterization of Pk, 
the type of constraints and the way the 
constraints are applied.

Minimize :2=∣V m−A I M∣2 where IM=∑k P k ; Pk≡Pixel Model
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27Deconvolution algorithms

● Scale-less algorithms:

Popular ones:  Clean, MEM and their variants

● Scale-sensitive algorithms (new turf!):

Existing ones: Multi-scale Clean, Asp-Clean

● Image plane corrections (in use)

Existing ones: w-projection, pb-projection

P k=Akx− xk

P k=Ak f  Position ,Scale 
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28The classic Clean algorithm (Hogbom, 1974)

● Prior knowledge about the sky:
     -  is composed of point sources
     -  is mostly blank

● Algorithm:
     1. Search for the peak in the dirty image.

2. Add a fraction g (loop gain) of the peak value to IM.

3. Subtract a scaled version of the PSF from the position of the 
peak IRi+1= IR

i – g B max(IRi)

 4. If residuals are not “noise like”, goto 1.

 5. Smooth IM by an estimate of the main lobe (the “clean 
beam”) of the PSF and add the residuals to make the 
“restored image”
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29Details of Clean
● It is a steepest descent minimization.

● Model image is a collection of delta functions – a 
scale insensitive algorithm.

● A least square fit of sinusoids to the visibilities 
which is proved to converge (Schwarz 1978).

● Stabilized by keeping a small loop gain (usually 
g=0.1-0.2).

● Stopping criteria: either the max. iterations or max. 
residuals some multiple of the expected peak noise.

● Search space constrained by user defined windows.

– Ignores coupling between pixels (extended emission) 
– assumes an orthogonal search space.
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30Clean: Model
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31Clean: Restored
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32Clean: Residual
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33Clean: Model visibilities

Sampled Vis

True Vis.

Model Vis.

Residual Vis.
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34Clean: Example
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35Variants of the Classic Clean

● Clark Clean – uses FFT to speed up
     Minor cycle(inexpensive) :  Clean the brightest points using an  

                                                 approximate PSF to gain speed

     Major cycle(expensive): Use FFT convolution to accurately remove

                                           the point sources found in the minor cycle

● Cotton-Schwab Clean: A variant of Clark Clean
    Subtract the point sources from the visibilities directly.

    Sometimes faster and always more accurate then Clark Clean.

    Easy to adapt for multiple fields.
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36Deconvolution algorithms: MEM

● MEM is a constrained minimization algorithm.

• Fast non-linear optimization algorithm due to 
Cornwell&Evans(1983).

● Solve the convolution equation, with the constrain of 
smoothness via the 'entropy'

    mk is the prior image – usually a flat default image.

● Default image is a very useful in incorporating model 
images from other algorithms etc.

● Naturally useful when final image is some 
combination of images (like mosaic images).     

H I =−∑k I k−log  I k/mk 
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37MEM: Some points

● Works better than Clean for extended emission.

● Every pixel is treated as a potential degree of 
freedom – a scale insensitive algorithm.

● Point sources are a problem, particularly along 
with large scale background emission – but can 
be removed with, say, Clean before hand.

● Easier to analyze and understand.
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38MEM: Model
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39MEM: Restored
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40MEM: Residual
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41MEM: Model visibilities

Sampled Vis

True Vis.

Model Vis.

Residual Vis.
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42MEM: Example
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43Role of boxes

● Limit the search for components to 

  only parts of the image.

    A way to regularize the deconvolution process. 
● Useful when small no. of visibilities

   (e.g. VLBI/snapshots).

● Do not over-Clean within the boxes 

   (over-fitting).

● Deeper Clean with no/loose boxes and lower loop gain 
can achieve similar (more objective) results.

● Stop when Cleaning within the boxes has no global 
effect (insignificant coupling of pixels due to the PSF).
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44Fundamental problem with scale-less decomposition

● Each pixel is not an independent degree of freedom 
(DOF). 

E.g., a gaussian shaped source covering 100 pixels can be 
represented by 5 parameters.

● Clean/MEM treats each pixel within a clean-box as an 
independent degree of freedom.

● Scale fundamentally separates noise and signal.
  -Largest coherent scale in BIN ~ the size of the resolution 

element.
  -Physically plausible IM is composed of scales >= the resolution 

element (smallest scale is of the size of the resolution 
element).

● Scale-sensitive reconstruction therefore leaves 
more noise-like (uncorrelated) residuals.
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45Scale Sensitive Deconvolution: MS-Clean

● Inspired by the Clean algorithm (Cornwell & 
Holdaway).

● Decompose the image into a pre-computed set 
of symmetric “blobs” at a few scales (e.g. 
Gaussians).

● Algorithm
    1. Make residual images smoothed to a few scales.

2. Find the peak among these residual images.
3. Subtract from all residual images a blob of scale 

corresponding to the scale of the residual image which had 
the peak.

4. Add the blob to the model image.
5. If more peaks in the residual images, goto 1.
6. Smooth the model image by the “clean beam” and add the 

        residuals.
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46MS-Clean details

✔ Deals with compact as well as extended 
emission better (need to include a blob of zero 
scale).

✔ Retains the scale-shift-n-subtract nature of 
Clean – easy to implement.

✔ Reasonably fast (for what it does!)
✗ Breaks up non-symmetric structures (as in 

Clean – but the errors are at larger scales than 
in Clean).

✗ Ignores coupling between blobs.
     Assumes an orthogonal space and steepest descent   

     minimization.
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47MS-Clean: Model
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48MS-Clean: Restored
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49MS-Clean: Residual
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50MS-Clean: Model visibilities

Sampled Vis

True Vis.

Model Vis.

Residual Vis.
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51MS-Clean: Example



Tenth  Synthesis Imaging Summer School, University of New Mexico, June 13-20, 2006

52Multi-resolution vs. Multi-scale Clean

● Subtle difference between AIPS and AIPS++ 
implementations of scale sensitive

   AIPS++: Each iteration of the minor cycle removes the optimal scale 
(one which reduces the residuals globally).  Effectively, this achieves 
a “simultaneous” deconvolution at various scales [Multi-Scale Clean]

   AIPS: A decision, based on a user defined parameter, is made at the 
start of each minor cycle about the optimal scale to deconvolve 
[Multi-resolution Clean].

● MS-Clean naturally detects and removes the scale 
with maximum power

● Removal of the optimal scale in MR-Clean 
strongly depends on the value of the user defined 
parameter.
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53Scale Sensitive Deconvolution: Asp-Clean

● Inspired by Pixon reconstruction (Puetter & Pina, 
1994).

● Decompose the image into a set of Adaptive Scale 
Pixel (Asp) model (Bhatnagar & Cornwell, 2004).

●Algorithm:
1. Find the peak at a few scales, and use the scale with the highest 

peak as an initial guess for the optimal dominant scale.
2. Make a set of active-aspen containing Aspen found in earlier  

        iterations and which are likely to have a significant impact on 
        convergence.

3. Find the best fit set of active-Aspen (expensive step).
4. If termination criterion not met, goto 1.
5. Smooth with the clean-beam.  Add residuals if it has 

systematics.
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54Asp-Clean details

✔ Deals with non-symmetric structures better.

✔ Incorporates the fact that scale changes across 
the image.  Residuals are more noise-like.

✔ Incorporates the fact that search space is 
potentially non-orthogonal (inherent coupling 
between Aspen).

✔ Aspen found in earlier iterations are not 
frozen.

✔ Scales well with computing power.

✗ Slower in execution speed.
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55Asp-Clean details: acceleration

Fig 1:  All Aspen are kept in the 
problem for all iterations. 
Scales all Asp scales evolve as a 
function of iterations.
Not all Aspen evolve 
significantly for at all iterations.

Fig 2: The active-set is 
determined by thresholding the 
first derivative.  Only those 
Aspen, shown by symbols, are 
kept in the problem which are 
likely to evolve significantly at 
each iteration.
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56Asp-Clean: Model
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57Asp-Clean: Restored
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58Asp-Clean: Residual
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59Asp-Clean: Model visibilities

Sampled Vis

True Vis.

Model Vis.

Residual Vis.
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60Asp-Clean: Example
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61Clean, MEM, MS-Clean, Asp-Clean

 VTrue- VModel

 Id-BIM    Niter ~60K                           50                       ~15K                         ~1K
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62High Dynamic Range imaging

● Full Beam Imaging

➢

➢           Direct dependent gains(e.g. Antenna Power 
Patterns P(l,m))
➢ Rotation of PB on the sky + pointing errors gives time 

varying direction dependent gains (limits Mosaicking DR).
➢ Antenna polarization response is azimuthally 

asymmetric
➢ VLA polarization squint, full beam full Stokes imaging 

correction required even for moderate dynamic ranges

➢ Sky and antenna response frequency dependent
➢ EVLA:                     PB changes by a factor of 2! 

Vij
obs= Jij∫ Jij

Sky SI Se2  U. Sd S

Jij≡Direction independant gains

Jij
Sky≡

max :min=2:1
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63Mathematical Framework

●

➢ If E is unitary (or approximately so), use          
           as the inverse operator 

➢ Use           for update direction (Minor Cycle)
➢ Use        for residuals computation (Major 

Cycle) 
● The modified transforms correct for image 

place errors 
➢ The W-Projection algorithm: Correction for 

non co-planarity
➢ The PB-Projection algorithm: Correction for 

PB effects (pointing errors, poln., PB rotation)

Vobs=EA I where E=AT JSkyA

ATET

ATET

EA
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64Wide field imaging

● W-projection:  
●Errors not due 
to w-term

●Limited by 
pointing 
errors/PB-
rotation?

●Errors in the 
first sidelobe 
due to PB-
rotation

w-term=e2w 1−l2−m2−1 
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65Primary Beams

Stokes-I PB(PA) PB(t) – Average PB
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66Simulations: Stokes-I 

 

● Stokes-I imaging with and without PB effects
(Polarization squint, Pointing offsets, PB rotation)

RMS ~15µJy/beam RMS ~1µJy/beam
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67Full-beam full-Stokes imaging

● Full Stokes imaging requires full Sky Muller matrix

●

●

●

Ji
p S , Ji

q S≡Antenna voltage pattern in orthogonal polarization

Ji
pq S , Ji

qpS≡Leakage of polarization due to reflection from curved surface

Jij S is not identity or even diagonal for DR>104
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68Structure of the Sky-Muller Matrix

 
J

03J
00

J
00

- J
11
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